Class: SVMKit::LinearModel::LogisticRegression
- Inherits:
-
Object
- Object
- SVMKit::LinearModel::LogisticRegression
- Includes:
- Base::BaseEstimator, Base::Classifier
- Defined in:
- lib/svmkit/linear_model/logistic_regression.rb
Overview
LogisticRegression is a class that implements Logistic Regression with stochastic gradient descent (SGD) optimization. For multiclass classification problem, it uses one-vs-the-rest strategy.
Reference
-
Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Mathematical Programming, vol. 127 (1), pp. 3–30, 2011.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Numo::DFloat
readonly
Return the bias term (a.k.a. intercept) for Logistic Regression.
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Logistic Regression.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
-
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, normalize: true, random_seed: nil) ⇒ LogisticRegression
constructor
Create a new classifier with Logisitc Regression by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, normalize: true, random_seed: nil) ⇒ LogisticRegression
Create a new classifier with Logisitc Regression by the SGD optimization.
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 51 def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, normalize: true, random_seed: nil) SVMKit::Validation.check_params_float(reg_param: reg_param, bias_scale: bias_scale) SVMKit::Validation.check_params_integer(max_iter: max_iter, batch_size: batch_size) SVMKit::Validation.check_params_boolean(fit_bias: fit_bias, normalize: normalize) SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed) SVMKit::Validation.check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:normalize] = normalize @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @bias_term = nil @classes = nil @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#bias_term ⇒ Numo::DFloat (readonly)
Return the bias term (a.k.a. intercept) for Logistic Regression.
31 32 33 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 31 def bias_term @bias_term end |
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
35 36 37 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 35 def classes @classes end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
39 40 41 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 39 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Logistic Regression.
27 28 29 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 27 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
110 111 112 113 114 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 110 def decision_function(x) SVMKit::Validation.check_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end |
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 79 def fit(x, y) SVMKit::Validation.check_sample_array(x) SVMKit::Validation.check_label_array(y) SVMKit::Validation.check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size _n_samples, n_features = x.shape if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 weight, bias = binary_fit(x, bin_y) @weight_vec[n, true] = weight @bias_term[n] = bias end else negative_label = y.to_a.uniq.sort.first bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @bias_term = binary_fit(x, bin_y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
149 150 151 152 153 154 155 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 149 def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, classes: @classes, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
159 160 161 162 163 164 165 166 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 159 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @classes = obj[:classes] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
120 121 122 123 124 125 126 127 128 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 120 def predict(x) SVMKit::Validation.check_sample_array(x) return Numo::Int32.cast(predict_proba(x)[true, 1].ge(0.5)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = predict_proba(x) Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
134 135 136 137 138 139 140 141 142 143 144 145 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 134 def predict_proba(x) SVMKit::Validation.check_sample_array(x) proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0) return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2 n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = proba probs[true, 0] = 1.0 - proba probs end |