Class: SVMKit::KernelMachine::KernelSVC
- Inherits:
-
Object
- Object
- SVMKit::KernelMachine::KernelSVC
- Includes:
- Base::BaseEstimator, Base::Classifier
- Defined in:
- lib/svmkit/kernel_machine/kernel_svc.rb
Overview
KernelSVC is a class that implements (Nonlinear) Kernel Support Vector Classifier with stochastic gradient descent (SGD) optimization. For multiclass classification problem, it uses one-vs-the-rest strategy.
Reference
-
Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Mathematical Programming, vol. 127 (1), pp. 3–30, 2011.
-
Instance Attribute Summary collapse
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Kernel SVC.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ KernelSVC
Fit the model with given training data.
-
#initialize(reg_param: 1.0, max_iter: 1000, probability: false, random_seed: nil) ⇒ KernelSVC
constructor
Create a new classifier with Kernel Support Vector Machine by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(reg_param: 1.0, max_iter: 1000, probability: false, random_seed: nil) ⇒ KernelSVC
Create a new classifier with Kernel Support Vector Machine by the SGD optimization.
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 45 def initialize(reg_param: 1.0, max_iter: 1000, probability: false, random_seed: nil) SVMKit::Validation.check_params_float(reg_param: reg_param) SVMKit::Validation.check_params_integer(max_iter: max_iter) SVMKit::Validation.check_params_boolean(probability: probability) SVMKit::Validation.check_params_type_or_nil(Integer, random_seed: random_seed) SVMKit::Validation.check_params_positive(reg_param: reg_param, max_iter: max_iter) @params = {} @params[:reg_param] = reg_param @params[:max_iter] = max_iter @params[:probability] = probability @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @prob_param = nil @classes = nil @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
33 34 35 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 33 def classes @classes end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
37 38 39 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 37 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Kernel SVC.
29 30 31 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 29 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
109 110 111 112 113 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 109 def decision_function(x) SVMKit::Validation.check_sample_array(x) x.dot(@weight_vec.transpose) end |
#fit(x, y) ⇒ KernelSVC
Fit the model with given training data.
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 69 def fit(x, y) SVMKit::Validation.check_sample_array(x) SVMKit::Validation.check_label_array(y) SVMKit::Validation.check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size _n_samples, n_features = x.shape if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @prob_param = Numo::DFloat.zeros(n_classes, 2) n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 @weight_vec[n, true] = binary_fit(x, bin_y) @prob_param[n, true] = if @params[:probability] SVMKit::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec[n, true].transpose), bin_y) else Numo::DFloat[1, 0] end end else negative_label = y.to_a.uniq.sort.first bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec = binary_fit(x, bin_y) @prob_param = if @params[:probability] SVMKit::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec.transpose), bin_y) else Numo::DFloat[1, 0] end end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
152 153 154 155 156 157 158 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 152 def marshal_dump { params: @params, weight_vec: @weight_vec, prob_param: @prob_param, classes: @classes, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
162 163 164 165 166 167 168 169 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 162 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @prob_param = obj[:prob_param] @classes = obj[:classes] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
120 121 122 123 124 125 126 127 128 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 120 def predict(x) SVMKit::Validation.check_sample_array(x) return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = decision_function(x) Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 135 def predict_proba(x) SVMKit::Validation.check_sample_array(x) if @classes.size > 2 probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0) return (probs.transpose / probs.sum(axis: 1)).transpose end n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0) probs[true, 0] = 1.0 - probs[true, 1] probs end |