Class: SVMKit::Ensemble::RandomForestClassifier

Inherits:
Object
  • Object
show all
Includes:
Base::BaseEstimator, Base::Classifier
Defined in:
lib/svmkit/ensemble/random_forest_classifier.rb

Overview

RandomForestClassifier is a class that implements random forest for classification.

Examples:

estimator =
  SVMKit::Ensemble::RandomForestClassifier.new(
    n_estimators: 10, criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
estimator.fit(training_samples, traininig_labels)
results = estimator.predict(testing_samples)

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Methods included from Base::Classifier

#score

Constructor Details

#initialize(n_estimators: 10, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ RandomForestClassifier

Create a new classifier with random forest.

Parameters:

  • n_estimators (Integer) (defaults to: 10)

    The numeber of decision trees for contructing random forest.

  • criterion (String) (defaults to: 'gini')

    The function to evalue spliting point. Supported criteria are ‘gini’ and ‘entropy’.

  • max_depth (Integer) (defaults to: nil)

    The maximum depth of the tree. If nil is given, decision tree grows without concern for depth.

  • max_leaf_nodes (Integer) (defaults to: nil)

    The maximum number of leaves on decision tree. If nil is given, number of leaves is not limited.

  • min_samples_leaf (Integer) (defaults to: 1)

    The minimum number of samples at a leaf node.

  • max_features (Integer) (defaults to: nil)

    The number of features to consider when searching optimal split point. If nil is given, split process considers all features.

  • random_seed (Integer) (defaults to: nil)

    The seed value using to initialize the random generator. It is used to randomly determine the order of features when deciding spliting point.



51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 51

def initialize(n_estimators: 10, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
               max_features: nil, random_seed: nil)
  SVMKit::Validation.check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
                                                       max_features: max_features, random_seed: random_seed)
  SVMKit::Validation.check_params_integer(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf)
  SVMKit::Validation.check_params_string(criterion: criterion)
  SVMKit::Validation.check_params_positive(n_estimators: n_estimators, max_depth: max_depth,
                                           max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
                                           max_features: max_features)
  @params = {}
  @params[:n_estimators] = n_estimators
  @params[:criterion] = criterion
  @params[:max_depth] = max_depth
  @params[:max_leaf_nodes] = max_leaf_nodes
  @params[:min_samples_leaf] = min_samples_leaf
  @params[:max_features] = max_features
  @params[:random_seed] = random_seed
  @params[:random_seed] ||= srand
  @estimators = nil
  @classes = nil
  @feature_importances = nil
  @rng = Random.new(@params[:random_seed])
end

Instance Attribute Details

#classesNumo::Int32 (readonly)

Return the class labels.

Returns:

  • (Numo::Int32)

    (size: n_classes)



28
29
30
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 28

def classes
  @classes
end

#estimatorsArray<DecisionTreeClassifier> (readonly)

Return the set of estimators.

Returns:

  • (Array<DecisionTreeClassifier>)


24
25
26
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 24

def estimators
  @estimators
end

#feature_importancesNumo::DFloat (readonly)

Return the importance for each feature.

Returns:

  • (Numo::DFloat)

    (size: n_features)



32
33
34
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 32

def feature_importances
  @feature_importances
end

#rngRandom (readonly)

Return the random generator for performing random sampling in the Pegasos algorithm.

Returns:

  • (Random)


36
37
38
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 36

def rng
  @rng
end

Instance Method Details

#apply(x) ⇒ Numo::Int32

Return the index of the leaf that each sample reached.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The samples to predict the labels.

Returns:

  • (Numo::Int32)

    (shape: [n_samples, n_estimators]) Leaf index for sample.



150
151
152
153
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 150

def apply(x)
  SVMKit::Validation.check_sample_array(x)
  Numo::Int32[*Array.new(@params[:n_estimators]) { |n| @estimators[n].apply(x) }].transpose
end

#fit(x, y) ⇒ RandomForestClassifier

Fit the model with given training data.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The training data to be used for fitting the model.

  • y (Numo::Int32)

    (shape: [n_samples]) The labels to be used for fitting the model.

Returns:



80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 80

def fit(x, y)
  SVMKit::Validation.check_sample_array(x)
  SVMKit::Validation.check_label_array(y)
  SVMKit::Validation.check_sample_label_size(x, y)
  # Initialize some variables.
  n_samples, n_features = x.shape
  @params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
  @params[:max_features] = [[1, @params[:max_features]].max, Math.sqrt(n_features).to_i].min
  @classes = Numo::Int32.asarray(y.to_a.uniq.sort)
  # Construct forest.
  @estimators = Array.new(@params[:n_estimators]) do |_n|
    tree = Tree::DecisionTreeClassifier.new(
      criterion: @params[:criterion], max_depth: @params[:max_depth],
      max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
      max_features: @params[:max_features], random_seed: @params[:random_seed]
    )
    bootstrap_ids = Array.new(n_samples) { @rng.rand(0...n_samples) }
    tree.fit(x[bootstrap_ids, true], y[bootstrap_ids])
  end
  # Calculate feature importances.
  @feature_importances = Numo::DFloat.zeros(n_features)
  @estimators.each { |tree| @feature_importances += tree.feature_importances }
  @feature_importances /= @feature_importances.sum
  self
end

#marshal_dumpHash

Dump marshal data.

Returns:

  • (Hash)

    The marshal data about RandomForestClassifier



157
158
159
160
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 157

def marshal_dump
  { params: @params, estimators: @estimators, classes: @classes,
    feature_importances: @feature_importances, rng: @rng }
end

#marshal_load(obj) ⇒ nil

Load marshal data.

Returns:

  • (nil)


164
165
166
167
168
169
170
171
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 164

def marshal_load(obj)
  @params = obj[:params]
  @estimators = obj[:estimators]
  @classes = obj[:classes]
  @feature_importances = obj[:feature_importances]
  @rng = obj[:rng]
  nil
end

#predict(x) ⇒ Numo::Int32

Predict class labels for samples.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The samples to predict the labels.

Returns:

  • (Numo::Int32)

    (shape: [n_samples]) Predicted class label per sample.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 110

def predict(x)
  SVMKit::Validation.check_sample_array(x)
  n_samples, = x.shape
  n_classes = @classes.size
  classes_arr = @classes.to_a
  ballot_box = Numo::DFloat.zeros(n_samples, n_classes)
  @estimators.each do |tree|
    predicted = tree.predict(x)
    n_samples.times do |n|
      class_id = classes_arr.index(predicted[n])
      ballot_box[n, class_id] += 1.0 unless class_id.nil?
    end
  end
  Numo::Int32[*Array.new(n_samples) { |n| @classes[ballot_box[n, true].max_index] }]
end

#predict_proba(x) ⇒ Numo::DFloat

Predict probability for samples.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The samples to predict the probailities.

Returns:

  • (Numo::DFloat)

    (shape: [n_samples, n_classes]) Predicted probability of each class per sample.



130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# File 'lib/svmkit/ensemble/random_forest_classifier.rb', line 130

def predict_proba(x)
  SVMKit::Validation.check_sample_array(x)
  n_samples, = x.shape
  n_classes = @classes.size
  classes_arr = @classes.to_a
  ballot_box = Numo::DFloat.zeros(n_samples, n_classes)
  @estimators.each do |tree|
    probs = tree.predict_proba(x)
    tree.classes.size.times do |n|
      class_id = classes_arr.index(tree.classes[n])
      ballot_box[true, class_id] += probs[true, n] unless class_id.nil?
    end
  end
  (ballot_box.transpose / ballot_box.sum(axis: 1)).transpose
end