Class: SVMKit::LinearModel::LogisticRegression
- Inherits:
-
Object
- Object
- SVMKit::LinearModel::LogisticRegression
- Includes:
- Base::BaseEstimator, Base::Classifier
- Defined in:
- lib/svmkit/linear_model/logistic_regression.rb
Overview
LogisticRegression is a class that implements Logistic Regression with stochastic gradient descent (SGD) optimization. For multiclass classification problem, it uses one-vs-the-rest strategy.
Reference
-
Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Mathematical Programming, vol. 127 (1), pp. 3–30, 2011.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Numo::DFloat
readonly
Return the bias term (a.k.a. intercept) for Logistic Regression.
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Logistic Regression.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
-
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, normalize: true, random_seed: nil) ⇒ LogisticRegression
constructor
Create a new classifier with Logisitc Regression by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, normalize: true, random_seed: nil) ⇒ LogisticRegression
Create a new classifier with Logisitc Regression by the SGD optimization.
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 51 def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, normalize: true, random_seed: nil) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:normalize] = normalize @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @bias_term = nil @classes = nil @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#bias_term ⇒ Numo::DFloat (readonly)
Return the bias term (a.k.a. intercept) for Logistic Regression.
31 32 33 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 31 def bias_term @bias_term end |
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
35 36 37 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 35 def classes @classes end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
39 40 41 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 39 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Logistic Regression.
27 28 29 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 27 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
100 101 102 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 100 def decision_function(x) x.dot(@weight_vec.transpose) + @bias_term end |
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 73 def fit(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size _n_samples, n_features = x.shape if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) weight, bias = binary_fit(x, bin_y) @weight_vec[n, true] = weight @bias_term[n] = bias end else negative_label = y.to_a.uniq.sort.first bin_y = Numo::Int32.cast(y.ne(negative_label)) @weight_vec, @bias_term = binary_fit(x, bin_y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
133 134 135 136 137 138 139 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 133 def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, classes: @classes, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
143 144 145 146 147 148 149 150 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 143 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @classes = obj[:classes] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
108 109 110 111 112 113 114 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 108 def predict(x) return Numo::Int32.cast(decision_function(x).ge(0.5)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = decision_function(x) Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
120 121 122 123 124 125 126 127 128 129 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 120 def predict_proba(x) proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0) return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2 n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = proba probs[true, 0] = 1.0 - proba probs end |