Class: SVMKit::KernelMachine::KernelSVC
- Inherits:
-
Object
- Object
- SVMKit::KernelMachine::KernelSVC
- Includes:
- Base::BaseEstimator, Base::Classifier
- Defined in:
- lib/svmkit/kernel_machine/kernel_svc.rb
Overview
KernelSVC is a class that implements (Nonlinear) Kernel Support Vector Classifier with stochastic gradient descent (SGD) optimization. For multiclass classification problem, it uses one-vs-the-rest strategy.
Reference
-
Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Mathematical Programming, vol. 127 (1), pp. 3–30, 2011.
-
Instance Attribute Summary collapse
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Kernel SVC.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ KernelSVC
Fit the model with given training data.
-
#initialize(reg_param: 1.0, max_iter: 1000, random_seed: nil) ⇒ KernelSVC
constructor
Create a new classifier with Kernel Support Vector Machine by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#score(x, y) ⇒ Float
Claculate the mean accuracy of the given testing data.
Constructor Details
#initialize(reg_param: 1.0, max_iter: 1000, random_seed: nil) ⇒ KernelSVC
Create a new classifier with Kernel Support Vector Machine by the SGD optimization.
44 45 46 47 48 49 50 51 52 53 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 44 def initialize(reg_param: 1.0, max_iter: 1000, random_seed: nil) @params = {} @params[:reg_param] = reg_param @params[:max_iter] = max_iter @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @classes @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
33 34 35 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 33 def classes @classes end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
37 38 39 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 37 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Kernel SVC.
29 30 31 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 29 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
86 87 88 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 86 def decision_function(x) x.dot(@weight_vec.transpose) end |
#fit(x, y) ⇒ KernelSVC
Fit the model with given training data.
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 61 def fit(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size _n_samples, n_features = x.shape if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 @weight_vec[n, true] = binary_fit(x, bin_y) end else negative_label = y.to_a.uniq.sort.first bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec = binary_fit(x, bin_y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
115 116 117 118 119 120 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 115 def marshal_dump { params: @params, weight_vec: @weight_vec, classes: @classes, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
124 125 126 127 128 129 130 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 124 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @classes = obj[:classes] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
95 96 97 98 99 100 101 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 95 def predict(x) return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = decision_function(x) Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }) end |
#score(x, y) ⇒ Float
Claculate the mean accuracy of the given testing data.
109 110 111 |
# File 'lib/svmkit/kernel_machine/kernel_svc.rb', line 109 def score(x, y) super end |