Class: SVMKit::PolynomialModel::FactorizationMachineClassifier
- Inherits:
-
Object
- Object
- SVMKit::PolynomialModel::FactorizationMachineClassifier
- Includes:
- Base::BaseEstimator, Base::Classifier
- Defined in:
- lib/svmkit/polynomial_model/factorization_machine_classifier.rb
Overview
FactorizationMachineClassifier is a class that implements Fatorization Machine for binary classification with (mini-batch) stochastic gradient descent optimization.
Reference
-
Rendle, “Factorization Machines with libFM,” ACM Transactions on Intelligent Systems and Technology, vol. 3 (3), pp. 57:1–57:22, 2012.
-
-
Rendle, “Factorization Machines,” Proceedings of the 10th IEEE International Conference on Data Mining (ICDM’10), pp. 995–1000, 2010.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Float
readonly
Return the bias term for Factoriazation Machine.
-
#factor_mat ⇒ Numo::DFloat
readonly
Return the factor matrix for Factorization Machine.
-
#rng ⇒ Random
readonly
Return the random generator for transformation.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Factorization Machine.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ FactorizationMachineClassifier
Fit the model with given training data.
-
#initialize(n_factors: 2, loss: 'hinge', reg_param_bias: 1.0, reg_param_weight: 1.0, reg_param_factor: 1.0, init_std: 0.1, max_iter: 1000, batch_size: 10, random_seed: nil) ⇒ FactorizationMachineClassifier
constructor
Create a new classifier with Support Vector Machine by the Pegasos algorithm.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(n_factors: 2, loss: 'hinge', reg_param_bias: 1.0, reg_param_weight: 1.0, reg_param_factor: 1.0, init_std: 0.1, max_iter: 1000, batch_size: 10, random_seed: nil) ⇒ FactorizationMachineClassifier
Create a new classifier with Support Vector Machine by the Pegasos algorithm.
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# File 'lib/svmkit/polynomial_model/factorization_machine_classifier.rb', line 55 def initialize(n_factors: 2, loss: 'hinge', reg_param_bias: 1.0, reg_param_weight: 1.0, reg_param_factor: 1.0, init_std: 0.1, max_iter: 1000, batch_size: 10, random_seed: nil) @params = {} @params[:n_factors] = n_factors @params[:loss] = loss @params[:reg_param_bias] = reg_param_bias @params[:reg_param_weight] = reg_param_weight @params[:reg_param_factor] = reg_param_factor @params[:init_std] = init_std @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:random_seed] = random_seed @params[:random_seed] ||= srand @factor_mat = nil @weight_vec = nil @bias_term = 0.0 @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#bias_term ⇒ Float (readonly)
Return the bias term for Factoriazation Machine.
38 39 40 |
# File 'lib/svmkit/polynomial_model/factorization_machine_classifier.rb', line 38 def bias_term @bias_term end |
#factor_mat ⇒ Numo::DFloat (readonly)
Return the factor matrix for Factorization Machine.
30 31 32 |
# File 'lib/svmkit/polynomial_model/factorization_machine_classifier.rb', line 30 def factor_mat @factor_mat end |
#rng ⇒ Random (readonly)
Return the random generator for transformation.
42 43 44 |
# File 'lib/svmkit/polynomial_model/factorization_machine_classifier.rb', line 42 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Factorization Machine.
34 35 36 |
# File 'lib/svmkit/polynomial_model/factorization_machine_classifier.rb', line 34 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
114 115 116 117 118 |
# File 'lib/svmkit/polynomial_model/factorization_machine_classifier.rb', line 114 def decision_function(x) linear_term = @bias_term + x.dot(@weight_vec) factor_term = 0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum linear_term + factor_term end |
#fit(x, y) ⇒ FactorizationMachineClassifier
Fit the model with given training data.
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# File 'lib/svmkit/polynomial_model/factorization_machine_classifier.rb', line 79 def fit(x, y) # Generate binary labels. negative_label = y.to_a.uniq.sort.shift bin_y = y.map { |l| l != negative_label ? 1.0 : -1.0 } # Initialize some variables. n_samples, n_features = x.shape rand_ids = [*0...n_samples].shuffle(random: @rng) @factor_mat = rand_normal([@params[:n_factors], n_features], 0, @params[:init_std]) @weight_vec = Numo::DFloat.zeros(n_features) @bias_term = 0.0 # Start optimization. @params[:max_iter].times do |t| # Random sampling. subset_ids = rand_ids.shift(@params[:batch_size]) rand_ids.concat(subset_ids) data = x[subset_ids, true] label = bin_y[subset_ids] # Calculate gradients for loss function. loss_grad = loss_gradient(data, label) next if loss_grad.ne(0.0).count.zero? # Update each parameter. @bias_term -= learning_rate(@params[:reg_param_bias], t) * bias_gradient(loss_grad) @weight_vec -= learning_rate(@params[:reg_param_weight], t) * weight_gradient(loss_grad, data) @params[:n_factors].times do |n| @factor_mat[n, true] -= learning_rate(@params[:reg_param_factor], t) * factor_gradient(loss_grad, data, @factor_mat[n, true]) end end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
143 144 145 |
# File 'lib/svmkit/polynomial_model/factorization_machine_classifier.rb', line 143 def marshal_dump { params: @params, factor_mat: @factor_mat, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
149 150 151 152 153 154 155 156 |
# File 'lib/svmkit/polynomial_model/factorization_machine_classifier.rb', line 149 def marshal_load(obj) @params = obj[:params] @factor_mat = obj[:factor_mat] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
124 125 126 |
# File 'lib/svmkit/polynomial_model/factorization_machine_classifier.rb', line 124 def predict(x) Numo::Int32.cast(decision_function(x).map { |v| v >= 0.0 ? 1 : -1 }) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples. Note that this method works normally only if the ‘loss’ parameter is set to ‘logistic’.
133 134 135 136 137 138 139 |
# File 'lib/svmkit/polynomial_model/factorization_machine_classifier.rb', line 133 def predict_proba(x) n_samples, = x.shape proba = Numo::DFloat.zeros(n_samples, 2) proba[true, 1] = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0) proba[true, 0] = 1.0 - proba[true, 1] proba end |