Class: SVMKit::LinearModel::SVC
- Inherits:
-
Object
- Object
- SVMKit::LinearModel::SVC
- Includes:
- Base::BaseEstimator, Base::Classifier
- Defined in:
- lib/svmkit/linear_model/svc.rb
Overview
SVC is a class that implements Support Vector Classifier with the Pegasos algorithm.
Reference
-
Shalev-Shwartz and Y. Singer, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Proc. ICML’07, pp. 807–814, 2007.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Float
readonly
Return the bias term (a.k.a. intercept) for SVC.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling in the Pegasos algorithm.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for SVC.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ SVC
Fit the model with given training data.
-
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) ⇒ SVC
constructor
Create a new classifier with Support Vector Machine by the Pegasos algorithm.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) ⇒ SVC
Create a new classifier with Support Vector Machine by the Pegasos algorithm.
43 44 45 46 47 48 49 50 51 52 53 54 55 |
# File 'lib/svmkit/linear_model/svc.rb', line 43 def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @bias_term = 0.0 @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#bias_term ⇒ Float (readonly)
Return the bias term (a.k.a. intercept) for SVC.
29 30 31 |
# File 'lib/svmkit/linear_model/svc.rb', line 29 def bias_term @bias_term end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling in the Pegasos algorithm.
33 34 35 |
# File 'lib/svmkit/linear_model/svc.rb', line 33 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for SVC.
25 26 27 |
# File 'lib/svmkit/linear_model/svc.rb', line 25 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
111 112 113 |
# File 'lib/svmkit/linear_model/svc.rb', line 111 def decision_function(x) @weight_vec.dot(x.transpose) + @bias_term end |
#fit(x, y) ⇒ SVC
Fit the model with given training data.
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
# File 'lib/svmkit/linear_model/svc.rb', line 62 def fit(x, y) # Generate binary labels negative_label = y.to_a.uniq.sort.shift bin_y = y.to_a.map { |l| l != negative_label ? 1 : -1 } # Expand feature vectors for bias term. samples = x if @params[:fit_bias] samples = Numo::NArray.hstack( [samples, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]] ) end # Initialize some variables. n_samples, n_features = samples.shape rand_ids = [*0...n_samples].shuffle(random: @rng) weight_vec = Numo::DFloat.zeros(n_features) # Start optimization. @params[:max_iter].times do |t| # random sampling subset_ids = rand_ids.shift(@params[:batch_size]) rand_ids.concat(subset_ids) target_ids = subset_ids.map { |n| n if weight_vec.dot(samples[n, true]) * bin_y[n] < 1 }.compact n_subsamples = target_ids.size next if n_subsamples.zero? # update the weight vector. eta = 1.0 / (@params[:reg_param] * (t + 1)) mean_vec = Numo::DFloat.zeros(n_features) target_ids.each { |n| mean_vec += samples[n, true] * bin_y[n] } mean_vec *= eta / n_subsamples weight_vec = weight_vec * (1.0 - eta * @params[:reg_param]) + mean_vec # scale the weight vector. norm = Math.sqrt(weight_vec.dot(weight_vec)) scaler = (1.0 / @params[:reg_param]**0.5) / (norm + 1.0e-12) weight_vec *= [1.0, scaler].min end # Store the learned model. if @params[:fit_bias] @weight_vec = weight_vec[0...n_features - 1] @bias_term = weight_vec[n_features - 1] else @weight_vec = weight_vec[0...n_features] @bias_term = 0.0 end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
125 126 127 |
# File 'lib/svmkit/linear_model/svc.rb', line 125 def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
131 132 133 134 135 136 137 |
# File 'lib/svmkit/linear_model/svc.rb', line 131 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
119 120 121 |
# File 'lib/svmkit/linear_model/svc.rb', line 119 def predict(x) Numo::Int32.cast(decision_function(x).map { |v| v >= 0 ? 1 : -1 }) end |