Class: SVMKit::LinearModel::SVC

Inherits:
Object
  • Object
show all
Includes:
Base::BaseEstimator, Base::Classifier
Defined in:
lib/svmkit/linear_model/svc.rb

Overview

SVC is a class that implements Support Vector Classifier with the Pegasos algorithm.

Reference

    1. Shalev-Shwartz and Y. Singer, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Proc. ICML’07, pp. 807–814, 2007.

Examples:

estimator =
  SVMKit::LinearModel::SVC.new(reg_param: 1.0, max_iter: 100, batch_size: 20, random_seed: 1)
estimator.fit(training_samples, traininig_labels)
results = estimator.predict(testing_samples)

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Methods included from Base::Classifier

#score

Constructor Details

#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) ⇒ SVC

Create a new classifier with Support Vector Machine by the Pegasos algorithm.

Parameters:

  • reg_param (Float) (defaults to: 1.0)

    The regularization parameter.

  • fit_bias (Boolean) (defaults to: false)

    The flag indicating whether to fit the bias term.

  • bias_scale (Float) (defaults to: 1.0)

    The scale of the bias term.

  • max_iter (Integer) (defaults to: 100)

    The maximum number of iterations.

  • batch_size (Integer) (defaults to: 50)

    The size of the mini batches.

  • random_seed (Integer) (defaults to: nil)

    The seed value using to initialize the random generator.



43
44
45
46
47
48
49
50
51
52
53
54
55
# File 'lib/svmkit/linear_model/svc.rb', line 43

def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil)
  @params = {}
  @params[:reg_param] = reg_param
  @params[:fit_bias] = fit_bias
  @params[:bias_scale] = bias_scale
  @params[:max_iter] = max_iter
  @params[:batch_size] = batch_size
  @params[:random_seed] = random_seed
  @params[:random_seed] ||= srand
  @weight_vec = nil
  @bias_term = 0.0
  @rng = Random.new(@params[:random_seed])
end

Instance Attribute Details

#bias_termFloat (readonly)

Return the bias term (a.k.a. intercept) for SVC.

Returns:

  • (Float)


29
30
31
# File 'lib/svmkit/linear_model/svc.rb', line 29

def bias_term
  @bias_term
end

#rngRandom (readonly)

Return the random generator for performing random sampling in the Pegasos algorithm.

Returns:

  • (Random)


33
34
35
# File 'lib/svmkit/linear_model/svc.rb', line 33

def rng
  @rng
end

#weight_vecNumo::DFloat (readonly)

Return the weight vector for SVC.

Returns:

  • (Numo::DFloat)

    (shape: [n_features])



25
26
27
# File 'lib/svmkit/linear_model/svc.rb', line 25

def weight_vec
  @weight_vec
end

Instance Method Details

#decision_function(x) ⇒ Numo::DFloat

Calculate confidence scores for samples.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The samples to compute the scores.

Returns:

  • (Numo::DFloat)

    (shape: [n_samples]) Confidence score per sample.



111
112
113
# File 'lib/svmkit/linear_model/svc.rb', line 111

def decision_function(x)
  @weight_vec.dot(x.transpose) + @bias_term
end

#fit(x, y) ⇒ SVC

Fit the model with given training data.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The training data to be used for fitting the model.

  • y (Numo::Int32)

    (shape: [n_samples]) The labels to be used for fitting the model.

Returns:

  • (SVC)

    The learned classifier itself.



62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# File 'lib/svmkit/linear_model/svc.rb', line 62

def fit(x, y)
  # Generate binary labels
  negative_label = y.to_a.uniq.sort.shift
  bin_y = y.to_a.map { |l| l != negative_label ? 1 : -1 }
  # Expand feature vectors for bias term.
  samples = x
  if @params[:fit_bias]
    samples = Numo::NArray.hstack(
      [samples, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]]
    )
  end
  # Initialize some variables.
  n_samples, n_features = samples.shape
  rand_ids = [*0...n_samples].shuffle(random: @rng)
  weight_vec = Numo::DFloat.zeros(n_features)
  # Start optimization.
  @params[:max_iter].times do |t|
    # random sampling
    subset_ids = rand_ids.shift(@params[:batch_size])
    rand_ids.concat(subset_ids)
    target_ids = subset_ids.map { |n| n if weight_vec.dot(samples[n, true]) * bin_y[n] < 1 }.compact
    n_subsamples = target_ids.size
    next if n_subsamples.zero?
    # update the weight vector.
    eta = 1.0 / (@params[:reg_param] * (t + 1))
    mean_vec = Numo::DFloat.zeros(n_features)
    target_ids.each { |n| mean_vec += samples[n, true] * bin_y[n] }
    mean_vec *= eta / n_subsamples
    weight_vec = weight_vec * (1.0 - eta * @params[:reg_param]) + mean_vec
    # scale the weight vector.
    norm = Math.sqrt(weight_vec.dot(weight_vec))
    scaler = (1.0 / @params[:reg_param]**0.5) / (norm + 1.0e-12)
    weight_vec *= [1.0, scaler].min
  end
  # Store the learned model.
  if @params[:fit_bias]
    @weight_vec = weight_vec[0...n_features - 1]
    @bias_term = weight_vec[n_features - 1]
  else
    @weight_vec = weight_vec[0...n_features]
    @bias_term = 0.0
  end
  self
end

#marshal_dumpHash

Dump marshal data.

Returns:

  • (Hash)

    The marshal data about SVC.



125
126
127
# File 'lib/svmkit/linear_model/svc.rb', line 125

def marshal_dump
  { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng }
end

#marshal_load(obj) ⇒ nil

Load marshal data.

Returns:

  • (nil)


131
132
133
134
135
136
137
# File 'lib/svmkit/linear_model/svc.rb', line 131

def marshal_load(obj)
  @params = obj[:params]
  @weight_vec = obj[:weight_vec]
  @bias_term = obj[:bias_term]
  @rng = obj[:rng]
  nil
end

#predict(x) ⇒ Numo::Int32

Predict class labels for samples.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The samples to predict the labels.

Returns:

  • (Numo::Int32)

    (shape: [n_samples]) Predicted class label per sample.



119
120
121
# File 'lib/svmkit/linear_model/svc.rb', line 119

def predict(x)
  Numo::Int32.cast(decision_function(x).map { |v| v >= 0 ? 1 : -1 })
end