Class: SVMKit::LinearModel::LogisticRegression
- Inherits:
-
Object
- Object
- SVMKit::LinearModel::LogisticRegression
- Includes:
- Base::BaseEstimator, Base::Classifier
- Defined in:
- lib/svmkit/linear_model/logistic_regression.rb
Overview
LogisticRegression is a class that implements Logistic Regression with stochastic gradient descent (SGD) optimization. Note that the class performs as a binary classifier.
Reference
-
Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Mathematical Programming, vol. 127 (1), pp. 3–30, 2011.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Float
readonly
Return the bias term (a.k.a. intercept) for Logistic Regression.
-
#rng ⇒ Random
readonly
Return the random generator for transformation.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Logistic Regression.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
-
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) ⇒ LogisticRegression
constructor
Create a new classifier with Logisitc Regression by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) ⇒ LogisticRegression
Create a new classifier with Logisitc Regression by the SGD optimization.
46 47 48 49 50 51 52 53 54 55 56 57 58 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 46 def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @bias_term = 0.0 @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#bias_term ⇒ Float (readonly)
Return the bias term (a.k.a. intercept) for Logistic Regression.
31 32 33 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 31 def bias_term @bias_term end |
#rng ⇒ Random (readonly)
Return the random generator for transformation.
35 36 37 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 35 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Logistic Regression.
27 28 29 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 27 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
116 117 118 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 116 def decision_function(x) @weight_vec.dot(x.transpose) + @bias_term end |
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 66 def fit(x, y) # Generate binary labels. negative_label = y.to_a.uniq.sort.shift bin_y = y.to_a.map { |l| l != negative_label ? 1 : 0 } # Expand feature vectors for bias term. samples = x if @params[:fit_bias] samples = Numo::NArray.hstack( [samples, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]] ) end # Initialize some variables. n_samples, n_features = samples.shape rand_ids = [*0...n_samples].shuffle(random: @rng) weight_vec = Numo::DFloat.zeros(n_features) # Start optimization. @params[:max_iter].times do |t| # random sampling subset_ids = rand_ids.shift(@params[:batch_size]) rand_ids.concat(subset_ids) # update the weight vector. eta = 1.0 / (@params[:reg_param] * (t + 1)) mean_vec = Numo::DFloat.zeros(n_features) subset_ids.each do |n| z = weight_vec.dot(samples[n, true]) coef = bin_y[n] / (1.0 + Math.exp(bin_y[n] * z)) mean_vec += samples[n, true] * coef end mean_vec *= eta / @params[:batch_size] weight_vec = weight_vec * (1.0 - eta * @params[:reg_param]) + mean_vec # scale the weight vector. norm = Math.sqrt(weight_vec.dot(weight_vec)) scaler = (1.0 / @params[:reg_param]**0.5) / (norm + 1.0e-12) weight_vec *= [1.0, scaler].min end # Store the learned model. if @params[:fit_bias] @weight_vec = weight_vec[0...n_features - 1] @bias_term = weight_vec[n_features - 1] else @weight_vec = weight_vec[0...n_features] @bias_term = 0.0 end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
142 143 144 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 142 def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
148 149 150 151 152 153 154 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 148 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
124 125 126 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 124 def predict(x) Numo::Int32.cast(sigmoid(decision_function(x)).map { |v| v >= 0.5 ? 1 : -1 }) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
132 133 134 135 136 137 138 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 132 def predict_proba(x) n_samples, = x.shape proba = Numo::DFloat.zeros(n_samples, 2) proba[true, 1] = sigmoid(decision_function(x)) proba[true, 0] = 1.0 - proba[true, 1] proba end |