Class: SVMKit::LinearModel::LogisticRegression

Inherits:
Object
  • Object
show all
Includes:
Base::BaseEstimator, Base::Classifier
Defined in:
lib/svmkit/linear_model/logistic_regression.rb

Overview

LogisticRegression is a class that implements Logistic Regression with stochastic gradient descent (SGD) optimization. Note that the class performs as a binary classifier.

Reference

    1. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Mathematical Programming, vol. 127 (1), pp. 3–30, 2011.

Examples:

estimator =
  SVMKit::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter: 100, batch_size: 20, random_seed: 1)
estimator.fit(training_samples, traininig_labels)
results = estimator.predict(testing_samples)

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Constructor Details

#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) ⇒ LogisticRegression

Create a new classifier with Logisitc Regression by the SGD optimization.



44
45
46
47
48
49
50
51
52
53
54
55
56
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 44

def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil)
  @params = {}
  @params[:reg_param] = reg_param
  @params[:fit_bias] = fit_bias
  @params[:bias_scale] = bias_scale
  @params[:max_iter] = max_iter
  @params[:batch_size] = batch_size
  @params[:random_seed] = random_seed
  @params[:random_seed] ||= srand
  @weight_vec = nil
  @bias_term = 0.0
  @rng = Random.new(@params[:random_seed])
end

Instance Attribute Details

#bias_termFloat (readonly)

Return the bias term (a.k.a. intercept) for Logistic Regression.



29
30
31
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 29

def bias_term
  @bias_term
end

#rngRandom (readonly)

Return the random generator for transformation.



33
34
35
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 33

def rng
  @rng
end

#weight_vecNumo::DFloat (readonly)

Return the weight vector for Logistic Regression.



25
26
27
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 25

def weight_vec
  @weight_vec
end

Instance Method Details

#decision_function(x) ⇒ Numo::DFloat

Calculate confidence scores for samples.



114
115
116
117
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 114

def decision_function(x)
  w = Numo::NMath.exp(((@weight_vec.dot(x.transpose) + @bias_term) * -1.0)) + 1.0
  w.map { |v| 1.0 / v }
end

#fit(x, y) ⇒ LogisticRegression

Fit the model with given training data.



64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 64

def fit(x, y)
  # Generate binary labels.
  negative_label = y.to_a.uniq.sort.shift
  bin_y = y.to_a.map { |l| l != negative_label ? 1 : 0 }
  # Expand feature vectors for bias term.
  samples = x
  if @params[:fit_bias]
    samples = Numo::NArray.hstack(
      [samples, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]]
    )
  end
  # Initialize some variables.
  n_samples, n_features = samples.shape
  rand_ids = [*0...n_samples].shuffle(random: @rng)
  weight_vec = Numo::DFloat.zeros(n_features)
  # Start optimization.
  @params[:max_iter].times do |t|
    # random sampling
    subset_ids = rand_ids.shift(@params[:batch_size])
    rand_ids.concat(subset_ids)
    # update the weight vector.
    eta = 1.0 / (@params[:reg_param] * (t + 1))
    mean_vec = Numo::DFloat.zeros(n_features)
    subset_ids.each do |n|
      z = weight_vec.dot(samples[n, true])
      coef = bin_y[n] / (1.0 + Math.exp(bin_y[n] * z))
      mean_vec += samples[n, true] * coef
    end
    mean_vec *= eta / @params[:batch_size]
    weight_vec = weight_vec * (1.0 - eta * @params[:reg_param]) + mean_vec
    # scale the weight vector.
    norm = Math.sqrt(weight_vec.dot(weight_vec))
    scaler = (1.0 / @params[:reg_param]**0.5) / (norm + 1.0e-12)
    weight_vec *= [1.0, scaler].min
  end
  # Store the learned model.
  if @params[:fit_bias]
    @weight_vec = weight_vec[0...n_features - 1]
    @bias_term = weight_vec[n_features - 1]
  else
    @weight_vec = weight_vec[0...n_features]
    @bias_term = 0.0
  end
  self
end

#marshal_dumpHash

Dump marshal data.



152
153
154
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 152

def marshal_dump
  { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng }
end

#marshal_load(obj) ⇒ nil

Load marshal data.



158
159
160
161
162
163
164
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 158

def marshal_load(obj)
  @params = obj[:params]
  @weight_vec = obj[:weight_vec]
  @bias_term = obj[:bias_term]
  @rng = obj[:rng]
  nil
end

#predict(x) ⇒ Numo::Int32

Predict class labels for samples.



123
124
125
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 123

def predict(x)
  Numo::Int32.cast(decision_function(x).map { |v| v >= 0.5 ? 1 : -1 })
end

#predict_proba(x) ⇒ Numo::DFloat

Predict probability for samples.



131
132
133
134
135
136
137
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 131

def predict_proba(x)
  n_samples, = x.shape
  proba = Numo::DFloat.zeros(n_samples, 2)
  proba[true, 1] = decision_function(x)
  proba[true, 0] = 1.0 - proba[true, 1]
  proba
end

#score(x, y) ⇒ Float

Claculate the mean accuracy of the given testing data.



144
145
146
147
148
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 144

def score(x, y)
  p = predict(x)
  n_hits = (y.to_a.map.with_index { |l, n| l == p[n] ? 1 : 0 }).inject(:+)
  n_hits / y.size.to_f
end