Class: SVMKit::LinearModel::LogisticRegression
- Inherits:
-
Object
- Object
- SVMKit::LinearModel::LogisticRegression
- Includes:
- Base::BaseEstimator, Base::Classifier
- Defined in:
- lib/svmkit/linear_model/logistic_regression.rb
Overview
LogisticRegression is a class that implements Logistic Regression with stochastic gradient descent (SGD) optimization. Note that the class performs as a binary classifier.
Reference
-
Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Mathematical Programming, vol. 127 (1), pp. 3–30, 2011.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Float
readonly
Return the bias term (a.k.a. intercept) for Logistic Regression.
-
#rng ⇒ Random
readonly
Return the random generator for transformation.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Logistic Regression.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
-
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) ⇒ LogisticRegression
constructor
Create a new classifier with Logisitc Regression by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
-
#score(x, y) ⇒ Float
Claculate the mean accuracy of the given testing data.
Constructor Details
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) ⇒ LogisticRegression
Create a new classifier with Logisitc Regression by the SGD optimization.
44 45 46 47 48 49 50 51 52 53 54 55 56 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 44 def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 100, batch_size: 50, random_seed: nil) @params = {} @params[:reg_param] = reg_param @params[:fit_bias] = fit_bias @params[:bias_scale] = bias_scale @params[:max_iter] = max_iter @params[:batch_size] = batch_size @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @bias_term = 0.0 @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#bias_term ⇒ Float (readonly)
Return the bias term (a.k.a. intercept) for Logistic Regression.
29 30 31 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 29 def bias_term @bias_term end |
#rng ⇒ Random (readonly)
Return the random generator for transformation.
33 34 35 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 33 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Logistic Regression.
25 26 27 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 25 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
114 115 116 117 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 114 def decision_function(x) w = Numo::NMath.exp(((@weight_vec.dot(x.transpose) + @bias_term) * -1.0)) + 1.0 w.map { |v| 1.0 / v } end |
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 64 def fit(x, y) # Generate binary labels. negative_label = y.to_a.uniq.sort.shift bin_y = y.to_a.map { |l| l != negative_label ? 1 : 0 } # Expand feature vectors for bias term. samples = x if @params[:fit_bias] samples = Numo::NArray.hstack( [samples, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]] ) end # Initialize some variables. n_samples, n_features = samples.shape rand_ids = [*0..n_samples - 1].shuffle(random: @rng) weight_vec = Numo::DFloat.zeros(n_features) # Start optimization. @params[:max_iter].times do |t| # random sampling subset_ids = rand_ids.shift(@params[:batch_size]) rand_ids.concat(subset_ids) # update the weight vector. eta = 1.0 / (@params[:reg_param] * (t + 1)) mean_vec = Numo::DFloat.zeros(n_features) subset_ids.each do |n| z = weight_vec.dot(samples[n, true]) coef = bin_y[n] / (1.0 + Math.exp(bin_y[n] * z)) mean_vec += samples[n, true] * coef end mean_vec *= eta / @params[:batch_size] weight_vec = weight_vec * (1.0 - eta * @params[:reg_param]) + mean_vec # scale the weight vector. norm = Math.sqrt(weight_vec.dot(weight_vec)) scaler = (1.0 / @params[:reg_param]**0.5) / (norm + 1.0e-12) weight_vec *= [1.0, scaler].min end # Store the learned model. if @params[:fit_bias] @weight_vec = weight_vec[0...n_features - 1] @bias_term = weight_vec[n_features - 1] else @weight_vec = weight_vec[0...n_features] @bias_term = 0.0 end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
148 149 150 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 148 def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
154 155 156 157 158 159 160 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 154 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
123 124 125 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 123 def predict(x) Numo::Int32.cast(decision_function(x).map { |v| v >= 0.5 ? 1 : -1 }) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
131 132 133 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 131 def predict_proba(x) decision_function(x) end |
#score(x, y) ⇒ Float
Claculate the mean accuracy of the given testing data.
140 141 142 143 144 |
# File 'lib/svmkit/linear_model/logistic_regression.rb', line 140 def score(x, y) p = predict(x) n_hits = (y.to_a.map.with_index { |l, n| l == p[n] ? 1 : 0 }).inject(:+) n_hits / y.size.to_f end |