Class: SVMKit::Preprocessing::MinMaxScaler
- Inherits:
-
Object
- Object
- SVMKit::Preprocessing::MinMaxScaler
- Includes:
- Base::BaseEstimator, Base::Transformer
- Defined in:
- lib/svmkit/preprocessing/min_max_scaler.rb
Overview
Normalize samples by scaling each feature to a given range.
normalizer = SVMKit::Preprocessing::MinMaxScaler.new(feature_range: [0.0, 1.0])
new_training_samples = normalizer.fit_transform(training_samples)
new_testing_samples = normalizer.transform(testing_samples)
Constant Summary collapse
- DEFAULT_PARAMS =
:nodoc:
{ # :nodoc: feature_range: [0.0, 1.0] }.freeze
Instance Attribute Summary collapse
-
#max_vec ⇒ Object
readonly
The vector consists of the maximum value for each feature.
-
#min_vec ⇒ Object
readonly
The vector consists of the minimum value for each feature.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#fit(x, _y = nil) ⇒ Object
Calculate the minimum and maximum value of each feature for scaling.
-
#fit_transform(x, _y = nil) ⇒ Object
Calculate the minimum and maximum values, and then normalize samples to feature_range.
-
#initialize(params = {}) ⇒ MinMaxScaler
constructor
Creates a new normalizer for scaling each feature to a given range.
-
#marshal_dump ⇒ Object
Serializes object through Marshal#dump.
-
#marshal_load(obj) ⇒ Object
Deserialize object through Marshal#load.
-
#transform(x) ⇒ Object
Perform scaling the given samples according to feature_range.
Constructor Details
#initialize(params = {}) ⇒ MinMaxScaler
Creates a new normalizer for scaling each feature to a given range.
call-seq:
new(feature_range: [0.0, 1.0]) -> MinMaxScaler
-
Arguments :
-
:feature_range(Array) (defaults to: [0.0, 1.0]) – The desired range of samples.
-
33 34 35 36 37 |
# File 'lib/svmkit/preprocessing/min_max_scaler.rb', line 33 def initialize(params = {}) @params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }]) @min_vec = nil @max_vec = nil end |
Instance Attribute Details
#max_vec ⇒ Object (readonly)
The vector consists of the maximum value for each feature.
24 25 26 |
# File 'lib/svmkit/preprocessing/min_max_scaler.rb', line 24 def max_vec @max_vec end |
#min_vec ⇒ Object (readonly)
The vector consists of the minimum value for each feature.
21 22 23 |
# File 'lib/svmkit/preprocessing/min_max_scaler.rb', line 21 def min_vec @min_vec end |
Instance Method Details
#fit(x, _y = nil) ⇒ Object
Calculate the minimum and maximum value of each feature for scaling.
:call-seq:
fit(x) -> MinMaxScaler
-
Arguments :
-
x(NMatrix, shape: [n_samples, n_features]) – The samples to calculate the minimum and maximum values.
-
-
Returns :
-
MinMaxScaler
-
48 49 50 51 52 |
# File 'lib/svmkit/preprocessing/min_max_scaler.rb', line 48 def fit(x, _y = nil) @min_vec = x.min(0) @max_vec = x.max(0) self end |
#fit_transform(x, _y = nil) ⇒ Object
Calculate the minimum and maximum values, and then normalize samples to feature_range.
:call-seq:
fit_transform(x) -> NMatrix
-
Arguments :
-
x(NMatrix, shape: [n_samples, n_features]) – The samples to calculate the minimum and maximum values.
-
-
Returns :
-
The scaled samples (NMatrix)
-
63 64 65 |
# File 'lib/svmkit/preprocessing/min_max_scaler.rb', line 63 def fit_transform(x, _y = nil) fit(x).transform(x) end |
#marshal_dump ⇒ Object
Serializes object through Marshal#dump.
84 85 86 87 88 |
# File 'lib/svmkit/preprocessing/min_max_scaler.rb', line 84 def marshal_dump # :nodoc: { params: @params, min_vec: Utils.dump_nmatrix(@min_vec), max_vec: Utils.dump_nmatrix(@max_vec) } end |
#marshal_load(obj) ⇒ Object
Deserialize object through Marshal#load.
91 92 93 94 95 96 |
# File 'lib/svmkit/preprocessing/min_max_scaler.rb', line 91 def marshal_load(obj) # :nodoc: @params = obj[:params] @min_vec = Utils.restore_nmatrix(obj[:min_vec]) @max_vec = Utils.restore_nmatrix(obj[:max_vec]) nil end |
#transform(x) ⇒ Object
Perform scaling the given samples according to feature_range.
call-seq:
transform(x) -> NMatrix
-
Arguments :
-
x(NMatrix, shape: [n_samples, n_features]) – The samples to be scaled.
-
-
Returns :
-
The scaled samples (NMatrix)
-
76 77 78 79 80 81 |
# File 'lib/svmkit/preprocessing/min_max_scaler.rb', line 76 def transform(x) n_samples, = x.shape dif_vec = @max_vec - @min_vec nx = (x - @min_vec.repeat(n_samples, 0)) / dif_vec.repeat(n_samples, 0) nx * (@params[:feature_range][1] - @params[:feature_range][0]) + @params[:feature_range][0] end |