Class: SVMKit::KernelApproximation::RBF

Inherits:
Object
  • Object
show all
Includes:
Base::BaseEstimator, Base::Transformer
Defined in:
lib/svmkit/kernel_approximation/rbf.rb

Overview

Class for RBF kernel feature mapping.

transformer = SVMKit::KernelApproximation::RBF.new(gamma: 1.0, n_coponents: 128, random_seed: 1)
new_training_samples = transformer.fit_transform(training_samples)
new_testing_samples = transformer.transform(testing_samples)
  • Refernce:

      1. Rahimi and B. Recht, “Random Features for Large-Scale Kernel Machines,” Proc. NIPS’07, pp.1177–1184, 2007.

Constant Summary collapse

DEFAULT_PARAMS =

:nodoc:

{ # :nodoc:
  gamma: 1.0,
  n_components: 128,
  random_seed: nil
}.freeze

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Constructor Details

#initialize(params = {}) ⇒ RBF

Creates a new transformer for mapping to RBF kernel feature space.

call-seq:

new(gamma: 1.0, n_components: 128, random_seed: 1) -> RBF
  • Arguments :

    • :gamma (Float) (defaults to: 1.0) – The parameter of RBF kernel: exp(-gamma * x^2)

    • :n_components (Integer) (defaults to: 128) – The number of dimensions of the RBF kernel feature space.

    • :random_seed (Integer) (defaults to: nil) – The seed value using to initialize the random generator.



43
44
45
46
47
48
49
# File 'lib/svmkit/kernel_approximation/rbf.rb', line 43

def initialize(params = {})
  self.params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }])
  self.params[:random_seed] ||= srand
  @rng = Random.new(self.params[:random_seed])
  @random_mat = nil
  @random_vec = nil
end

Instance Attribute Details

#random_matObject (readonly)

The random matrix for transformation.



26
27
28
# File 'lib/svmkit/kernel_approximation/rbf.rb', line 26

def random_mat
  @random_mat
end

#random_vecObject (readonly)

The random vector for transformation.



29
30
31
# File 'lib/svmkit/kernel_approximation/rbf.rb', line 29

def random_vec
  @random_vec
end

#rngObject (readonly)

The random generator for transformation.



32
33
34
# File 'lib/svmkit/kernel_approximation/rbf.rb', line 32

def rng
  @rng
end

Instance Method Details

#fit(x, _y = nil) ⇒ Object

Fit the model with given training data.

call-seq:

fit(x) -> RBF
  • Arguments :

    • x (NMatrix, shape: [n_samples, n_features]) – The training data to be used for fitting the model. This method uses only the number of features of the data.

  • Returns :

    • The learned transformer itself.



60
61
62
63
64
65
66
67
68
69
70
# File 'lib/svmkit/kernel_approximation/rbf.rb', line 60

def fit(x, _y = nil)
  n_features = x.shape[1]
  params[:n_components] = 2 * n_features if params[:n_components] <= 0
  @random_mat = rand_normal([n_features, params[:n_components]]) * (2.0 * params[:gamma])**0.5
  n_half_components = params[:n_components] / 2
  @random_vec = NMatrix.zeros([1, params[:n_components] - n_half_components]).hconcat(
    NMatrix.ones([1, n_half_components]) * (0.5 * Math::PI)
  )
  #@random_vec = rand_uniform([1, self.params[:n_components]]) * (2.0 * Math::PI)
  self
end

#fit_transform(x, _y = nil) ⇒ Object

Fit the model with training data, and then transform them with the learned model.

call-seq:

fit_transform(x) -> NMatrix
  • Arguments :

    • x (NMatrix, shape: [n_samples, n_features]) – The training data to be used for fitting the model.

  • Returns :

    • The transformed data (NMatrix, shape: [n_samples, n_components]).



81
82
83
# File 'lib/svmkit/kernel_approximation/rbf.rb', line 81

def fit_transform(x, _y = nil)
  fit(x).transform(x)
end

#marshal_dumpObject

Serializes object through Marshal#dump.



101
102
103
104
105
106
# File 'lib/svmkit/kernel_approximation/rbf.rb', line 101

def marshal_dump # :nodoc:
  { params: params,
    random_mat: Utils.dump_nmatrix(@random_mat),
    random_vec: Utils.dump_nmatrix(@random_vec),
    rng: @rng }
end

#marshal_load(obj) ⇒ Object

Deserialize object through Marshal#load.



109
110
111
112
113
114
115
# File 'lib/svmkit/kernel_approximation/rbf.rb', line 109

def marshal_load(obj) # :nodoc:
  self.params = obj[:params]
  @random_mat = Utils.restore_nmatrix(obj[:random_mat])
  @random_vec = Utils.restore_nmatrix(obj[:random_vec])
  @rng = obj[:rng]
  nil
end

#transform(x) ⇒ Object

Transform the given data with the learned model.

call-seq:

transform(x) -> NMatrix
  • Arguments :

    • x (NMatrix, shape: [n_samples, n_features]) – The data to be transformed with the learned model.

  • Returns :

    • The transformed data (NMatrix, shape: [n_samples, n_components]).



94
95
96
97
98
# File 'lib/svmkit/kernel_approximation/rbf.rb', line 94

def transform(x)
  n_samples, = x.shape
  projection = x.dot(@random_mat) + @random_vec.repeat(n_samples, 0)
  projection.sin * ((2.0 / params[:n_components])**0.5)
end