Module: SunCalc
- Defined in:
- lib/suncalc.rb,
lib/suncalc/version.rb
Constant Summary collapse
- RAD =
Shortcuts for easier to read equations
Math::PI / 180
- DAY_MS =
1000 * 60 * 60 * 24
- J1970 =
2440588- J2000 =
2451545- E =
RAD * 23.4397
- J0 =
0.0009
- SDIST =
149598000- HC =
0.133 * RAD
- TIMES =
[ [-0.833, :sunrise, :sunset], [-0.3, :sunrise_end, :sunset_start], [-6, :dawn, :dusk], [-12, :nautical_dawn, :nautical_dusk], [-18, :night_end, :night], [6, :golden_hour_end, :golden_hour] ]
- VERSION =
"1.0.1"
Class Method Summary collapse
-
.add_time(angle, rise_name, set_name) ⇒ Object
Sun times configuration (angle, morning name, evening name).
- .altitude(h, phi, dec) ⇒ Object
- .approx_transit(ht, lw, n) ⇒ Object
- .azimuth(h, phi, dec) ⇒ Object
- .declination(l, b) ⇒ Object
- .ecliptic_longitude(m) ⇒ Object
- .from_julian(j) ⇒ Object
-
.get_moon_illumination(date) ⇒ Object
Calculations for illumination parameters of the moon.
- .get_moon_position(date, lat, lng) ⇒ Object
- .get_moon_times(date, lat, lng) ⇒ Object
-
.get_position(date, lat, lng) ⇒ Object
Calculate sun position for a given date and latitude/longitude.
-
.get_set_j(h, lw, phi, dec, n, m, l) ⇒ Object
Returns set time for the given sun altitude.
-
.get_times(date, lat, lng) ⇒ Object
Calculate sun times for a given date and latitude/longitude.
- .hour_angle(h, phi, d) ⇒ Object
- .hours_later(date, h) ⇒ Object
-
.julian_cycle(d, lw) ⇒ Object
Calculations for sun times.
-
.moon_coords(d) ⇒ Object
Moon calculations.
-
.right_ascension(l, b) ⇒ Object
General calculations for position.
- .sidereal_time(d, lw) ⇒ Object
-
.solar_mean_anomaly(d) ⇒ Object
General sun calculations.
- .solar_transit_j(ds, m, l) ⇒ Object
- .sun_coords(d) ⇒ Object
- .to_days(date) ⇒ Object
-
.to_julian(date) ⇒ Object
Date/time constants and conversions.
Class Method Details
.add_time(angle, rise_name, set_name) ⇒ Object
Sun times configuration (angle, morning name, evening name)
98 99 100 |
# File 'lib/suncalc.rb', line 98 def self.add_time(angle, rise_name, set_name) TIMES << [angle, rise_name, set_name] end |
.altitude(h, phi, dec) ⇒ Object
52 53 54 |
# File 'lib/suncalc.rb', line 52 def self.altitude(h, phi, dec) Math::asin(Math::sin(phi) * Math::sin(dec) + Math::cos(phi) * Math::cos(dec) * Math::cos(h)) end |
.approx_transit(ht, lw, n) ⇒ Object
107 108 109 |
# File 'lib/suncalc.rb', line 107 def self.approx_transit(ht, lw, n) J0 + (ht + lw) / (2 * Math::PI) + n end |
.azimuth(h, phi, dec) ⇒ Object
48 49 50 |
# File 'lib/suncalc.rb', line 48 def self.azimuth(h, phi, dec) Math::atan2(Math::sin(h), Math::cos(h) * Math::sin(phi) - Math::tan(dec) * Math::cos(phi)) end |
.declination(l, b) ⇒ Object
44 45 46 |
# File 'lib/suncalc.rb', line 44 def self.declination(l, b) Math::asin(Math::sin(b) * Math::cos(E) + Math::cos(b) * Math::sin(E) * Math::sin(l)) end |
.ecliptic_longitude(m) ⇒ Object
65 66 67 68 69 70 |
# File 'lib/suncalc.rb', line 65 def self.ecliptic_longitude(m) c = RAD * (1.9148 * Math::sin(m) + 0.02 * Math::sin(2 * m) + 0.0003 * Math::sin(3 * m)) p = RAD * 102.9372 m + c + p + Math::PI end |
.from_julian(j) ⇒ Object
29 30 31 |
# File 'lib/suncalc.rb', line 29 def self.from_julian(j) Time.at(((j + 0.5 - J1970) * DAY_MS)/1000).utc end |
.get_moon_illumination(date) ⇒ Object
Calculations for illumination parameters of the moon
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# File 'lib/suncalc.rb', line 198 def self.get_moon_illumination(date) d = to_days(date) s = sun_coords(d) m = moon_coords(d) phi = Math::acos(Math::sin(s[:dec]) * Math::sin(m[:dec]) + Math::cos(s[:dec]) * Math::cos(m[:dec]) * Math::cos(s[:ra] - m[:ra])) inc = Math::atan2(SDIST * Math::sin(phi), m[:dist] - SDIST * Math::cos(phi)) angle = Math::atan2(Math::cos(s[:dec]) * Math::sin(s[:ra] - m[:ra]), Math::sin(s[:dec]) * Math::cos(m[:dec]) - Math::cos(s[:dec]) * Math::sin(m[:dec]) * Math::cos(s[:ra] - m[:ra])) result = { :fraction => (1 + Math::cos(inc)) / 2, :phase => 0.5 + 0.5 * inc * (angle < 0 ? -1 : 1) / Math::PI, :angle => angle } result end |
.get_moon_position(date, lat, lng) ⇒ Object
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# File 'lib/suncalc.rb', line 177 def self.get_moon_position(date, lat, lng) lw = RAD * -lng phi = RAD * lat d = to_days(date) c = moon_coords(d) th = sidereal_time(d, lw) - c[:ra] h = altitude(th, phi, c[:dec]) h = h + RAD * 0.017 / Math::tan(h + RAD * 10.26 / (h + RAD * 5.10)) result = { :azimuth => azimuth(th, phi, c[:dec]), :altitude => h, :distance => c[:dist] } result end |
.get_moon_times(date, lat, lng) ⇒ Object
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# File 'lib/suncalc.rb', line 220 def self.get_moon_times(date, lat, lng) t = Time.new(date.year.to_i, date.month.to_i, date.day.to_i).utc h0 = get_moon_position(t, lat, lng)[:altitude] - HC rise = false set = false ye = 0 (1..24).step(2) do |i| h1 = get_moon_position(hours_later(t, i), lat, lng)[:altitude] - HC h2 = get_moon_position(hours_later(t, i + 1), lat, lng)[:altitude] - HC a = (h0 + h2) / 2 - h1 b = (h2 - h0) / 2 xe = -b / (2 * a) ye = (a * xe + b) * xe + h1 d = b * b - 4 * a * h1 roots = 0 if d >= 0 dx = Math::sqrt(d) / (a.abs * 2) x1 = xe - dx x2 = xe + dx if x1.abs <= 1 roots += 1 end if x2.abs <= 1 roots += 1 end if x1 < -1 x1 = x2 end end if roots === 1 if h0 < 0 rise = i + x1 else set = i + x1 end elsif roots === 2 rise = i + (ye < 0 ? x2 : x1) set = i + (ye < 0 ? x1 : x2) end break if rise and set h0 = h2 end result = {} if rise result[:rise] = hours_later(t, rise) end if set result[:set] = hours_later(t, set) end if not rise and not set result[ye > 0 ? :alwaysUp : :alwaysDown] = true end result end |
.get_position(date, lat, lng) ⇒ Object
Calculate sun position for a given date and latitude/longitude
84 85 86 87 88 89 90 91 92 93 94 |
# File 'lib/suncalc.rb', line 84 def self.get_position(date, lat, lng) lw = RAD * -lng phi = RAD * lat d = to_days(date) c = sun_coords(d) h = sidereal_time(d, lw) - c[:ra] { :azimuth => azimuth(h, phi, c[:dec]), :altitude => altitude(h, phi, c[:dec]) } end |
.get_set_j(h, lw, phi, dec, n, m, l) ⇒ Object
Returns set time for the given sun altitude
120 121 122 123 124 |
# File 'lib/suncalc.rb', line 120 def self.get_set_j(h, lw, phi, dec, n, m, l) w = hour_angle(h, phi, dec) a = approx_transit(w, lw, n) solar_transit_j(a, m, l) end |
.get_times(date, lat, lng) ⇒ Object
Calculate sun times for a given date and latitude/longitude
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# File 'lib/suncalc.rb', line 127 def self.get_times(date, lat, lng) lw = RAD * -lng phi = RAD * lat d = to_days(date) n = julian_cycle(d, lw) ds = approx_transit(0, lw, n) m = solar_mean_anomaly(ds) l = ecliptic_longitude(m) dec = declination(l, 0) jnoon = solar_transit_j(ds, m, l) result = { :solar_noon => from_julian(jnoon), :nadir => from_julian(jnoon - 0.5) } TIMES.each do |time| jset = get_set_j(time[0] * RAD, lw, phi, dec, n, m, l) jrise = jnoon - (jset - jnoon) result[time[1]] = from_julian(jrise) result[time[2]] = from_julian(jset) end result end |
.hour_angle(h, phi, d) ⇒ Object
115 116 117 |
# File 'lib/suncalc.rb', line 115 def self.hour_angle(h, phi, d) Math::acos((Math::sin(h) - Math::sin(phi) * Math::sin(d)) / (Math::cos(phi) * Math::cos(d))) end |
.hours_later(date, h) ⇒ Object
216 217 218 |
# File 'lib/suncalc.rb', line 216 def self.hours_later(date, h) Time.at(date.to_f + (h * (DAY_MS/1000)) / 24).utc end |
.julian_cycle(d, lw) ⇒ Object
Calculations for sun times
103 104 105 |
# File 'lib/suncalc.rb', line 103 def self.julian_cycle(d, lw) (d - J0 - lw / (2 * Math::PI)).round end |
.moon_coords(d) ⇒ Object
Moon calculations
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# File 'lib/suncalc.rb', line 158 def self.moon_coords(d) el = RAD * (218.316 + 13.176396 * d) m = RAD * (134.963 + 13.064993 * d) f = RAD * (93.272 + 13.229350 * d) l = el + RAD * 6.289 * Math::sin(m) b = RAD * 5.128 * Math::sin(f) dt = 385001 - 20905 * Math::cos(m) result = { :ra => right_ascension(l, b), :dec => declination(l, b), :dist => dt } result end |
.right_ascension(l, b) ⇒ Object
General calculations for position
40 41 42 |
# File 'lib/suncalc.rb', line 40 def self.right_ascension(l, b) Math::atan2(Math::sin(l) * Math::cos(E) - Math::tan(b) * Math::sin(E), Math::cos(l)) end |
.sidereal_time(d, lw) ⇒ Object
56 57 58 |
# File 'lib/suncalc.rb', line 56 def self.sidereal_time(d, lw) RAD * (280.16 + 360.9856235 * d) - lw end |
.solar_mean_anomaly(d) ⇒ Object
General sun calculations
61 62 63 |
# File 'lib/suncalc.rb', line 61 def self.solar_mean_anomaly(d) RAD * (357.5291 + 0.98560028 * d) end |
.solar_transit_j(ds, m, l) ⇒ Object
111 112 113 |
# File 'lib/suncalc.rb', line 111 def self.solar_transit_j(ds, m, l) J2000 + ds + 0.0053 * Math::sin(m) - 0.0069 * Math::sin(2 * l) end |
.sun_coords(d) ⇒ Object
72 73 74 75 76 77 78 79 80 81 |
# File 'lib/suncalc.rb', line 72 def self.sun_coords(d) @result = [] sM = solar_mean_anomaly(d) eL = ecliptic_longitude(sM) { :dec => declination(eL, 0), :ra => right_ascension(eL, 0) } end |
.to_days(date) ⇒ Object
33 34 35 |
# File 'lib/suncalc.rb', line 33 def self.to_days(date) to_julian(date) - J2000 end |
.to_julian(date) ⇒ Object
Date/time constants and conversions
25 26 27 |
# File 'lib/suncalc.rb', line 25 def self.to_julian(date) (date.to_f * 1000) / DAY_MS - 0.5 + J1970 end |