Module: SQA::SeasonalAnalyzer

Defined in:
lib/sqa/seasonal_analyzer.rb

Class Method Summary collapse

Class Method Details

.analyze(stock) ⇒ Hash

Analyze seasonal performance patterns

Parameters:

Returns:

  • (Hash)

    Seasonal performance metadata



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# File 'lib/sqa/seasonal_analyzer.rb', line 25

def analyze(stock)
  df = stock.df


  # Extract dates and prices (handle both 'date' and 'timestamp' column names)
  date_column = df.data.columns.include?("date") ? "date" : "timestamp"
  dates = df[date_column].to_a.map { |d| Date.parse(d.to_s) }

  prices = df["adj_close_price"].to_a

  # Calculate monthly returns
  monthly_returns = calculate_monthly_returns(dates, prices)
  quarterly_returns = calculate_quarterly_returns(dates, prices)

  {
    monthly_returns: monthly_returns,
    quarterly_returns: quarterly_returns,
    best_months: rank_months(monthly_returns).first(3),
    worst_months: rank_months(monthly_returns).last(3),
    best_quarters: rank_quarters(quarterly_returns).first(2),
    worst_quarters: rank_quarters(quarterly_returns).last(2),
    has_seasonal_pattern: detect_seasonality(monthly_returns)
  }
end

.context_for_date(date) ⇒ Hash

Get seasonal context for a specific date

Parameters:

  • date (Date)

    Date to check

Returns:

  • (Hash)

    Seasonal context



116
117
118
119
120
121
122
123
124
125
126
127
# File 'lib/sqa/seasonal_analyzer.rb', line 116

def context_for_date(date)
  {
    month: date.month,
    quarter: ((date.month - 1) / 3) + 1,
    month_name: Date::MONTHNAMES[date.month],
    quarter_name: "Q#{((date.month - 1) / 3) + 1}",
    is_year_end: [11, 12].include?(date.month),
    is_year_start: [1, 2].include?(date.month),
    is_holiday_season: [11, 12].include?(date.month),
    is_earnings_season: [1, 4, 7, 10].include?(date.month)
  }
end

.detect_seasonality(monthly_returns) ⇒ Boolean

Detect if stock has seasonal pattern

Parameters:

  • monthly_returns (Hash)

    Monthly return statistics

Returns:

  • (Boolean)

    True if significant seasonal pattern exists



99
100
101
102
103
104
105
106
107
108
109
# File 'lib/sqa/seasonal_analyzer.rb', line 99

def detect_seasonality(monthly_returns)
  returns = monthly_returns.values.map { |stats| stats[:avg_return] }

  # Check variance in monthly returns
  mean = returns.sum / returns.size
  variance = returns.map { |r| (r - mean)**2 }.sum / returns.size
  std_dev = Math.sqrt(variance)

  # If standard deviation of monthly returns is high, likely seasonal
  std_dev > 2.0
end

.filter_by_months(stock, months) ⇒ Hash

Filter data by calendar months

Parameters:

  • stock (SQA::Stock)

    Stock to analyze

  • months (Array<Integer>)

    Months to include (1-12)

Returns:

  • (Hash)

    Filtered data



56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# File 'lib/sqa/seasonal_analyzer.rb', line 56

def filter_by_months(stock, months)
  df = stock.df

  date_column = df.data.columns.include?("date") ? "date" : "timestamp"
  dates = df[date_column].to_a.map { |d| Date.parse(d.to_s) }

  prices = df["adj_close_price"].to_a

  indices = []
  dates.each_with_index do |date, i|
    indices << i if months.include?(date.month)
  end

  {
    indices: indices,
    dates: indices.map { |i| dates[i] },
    prices: indices.map { |i| prices[i] }
  }
end

.filter_by_quarters(stock, quarters) ⇒ Hash

Filter data by quarters

Parameters:

  • stock (SQA::Stock)

    Stock to analyze

  • quarters (Array<Integer>)

    Quarters to include (1-4)

Returns:

  • (Hash)

    Filtered data



82
83
84
85
86
87
88
89
90
91
92
# File 'lib/sqa/seasonal_analyzer.rb', line 82

def filter_by_quarters(stock, quarters)
  quarter_months = {
    1 => [1, 2, 3],
    2 => [4, 5, 6],
    3 => [7, 8, 9],
    4 => [10, 11, 12]
  }

  months = quarters.flat_map { |q| quarter_months[q] }
  filter_by_months(stock, months)
end