Class: MPFR
- Inherits:
-
Numeric
- Object
- Numeric
- MPFR
- Defined in:
- ext/mpfr_rb.c,
lib/sollya.rb,
ext/mpfr_rb.c
Overview
MPFR methods take as last argument a rounding mode, and have a return value of type integer, called the ternary value. The value stored in the receiver is correctly rounded, i.e., MPFR behaves as if it computed the result with an infinite precision, then rounded it to the precision of this variable. The input variables are regarded as exact (in particular, their precision does not affect the result).
As a consequence, in case of a non-zero real rounded result, the error on the result is less than or equal to 1/2 ulp (unit in the last place) of that result in the rounding to nearest mode, and less than 1 ulp of that result in the directed rounding modes (a ulp is the weight of the least significant represented bit of the result after rounding).
Unless documented otherwise, methods returning an integer return a ternary value.
If the ternary value is zero, it means that the value stored in the receiver is the exact result of the corresponding mathematical function.
If the ternary value is positive (resp. negative), it means the value stored in the receiver is greater (resp. lower) than the exact result.
For example with the :round_up rounding mode, the ternary value is usually positive, except when the result is exact, in which case it is zero.
In the case of an infinite result, it is considered as inexact when it was obtained by overflow, and exact otherwise.
A NaN result (Not-a-Number) always corresponds to an exact return value.
The opposite of a returned ternary value is guaranteed to be representable in an integer.
Constant Summary collapse
- PREC_MIN =
The minimum precision that can be set for a MPFR object.
INT2NUM(MPFR_PREC_MIN)
- PREC_MAX =
The maximum precision that can be set for a MPFR object.
ULL2NUM(MPFR_PREC_MAX)
- EMIN_MIN =
The minimum of the exponents allowed for emin=. This value is implementation dependent, thus a program using
MPFR.emin = EMIN_MINmay not be portable. LL2NUM(mpfr_get_emin_min())
- EMIN_MAX =
The maximum of the exponents allowed for emin=.
LL2NUM(mpfr_get_emin_max())
- EMAX_MIN =
The minimum of the exponents allowed for emax=.
LL2NUM(mpfr_get_emin_min())
- EMAX_MAX =
The maximum of the exponents allowed for emax=. This value is implementation dependent, thus a program using
MPFR.emax = EMAX_MAXmay not be portable. LL2NUM(mpfr_get_emin_max())
Class Method Summary collapse
-
.default_prec ⇒ Integer
Return the current default MPFR precision in bits.
- .default_prec=(prec) ⇒ Integer
-
.default_rounding ⇒ Symbol
Return the default rounding used when the
:roundkeyword is not set. -
.default_rounding=(rounding) ⇒ Symbol
Set the default rounding used when the
:roundkeyword is not set. -
.emax ⇒ Integer
Return the (current) largest exponents allowed for a floating-point variable.
-
.emax=(e) ⇒ Integer
Set the largest exponents allowed for a floating-point variable.
-
.emin ⇒ Integer
Return the (current) smallest exponents allowed for a floating-point variable.
-
.emin=(e) ⇒ Integer
Set the smallest exponents allowed for a floating-point variable.
-
.free_cache ⇒ Object
Free all caches and pools used by MPFR internally.
-
.i_2exp(i, e) ⇒ MPFR
Return a new MPFR object from the value of
imultiplied by two to the powere. -
.modf(ipart, fpart, x, round: MPFR.default_rounding) ⇒ Integer
Set simultaneously
ipartto the integral part ofxandfpartto the fractional part ofx, rounded in the directionroundwith the corresponding precision ofipartandfpart. -
.patches ⇒ String
Return a string containing the ids of the patches applied to the MPFR library (contents of the PATCHES file), separated by spaces.
-
.version ⇒ String
Return the MPFR version.
Instance Method Summary collapse
- #%(other) ⇒ Object
- #*(other) ⇒ Object
- #**(other) ⇒ Object
- #+(other) ⇒ Object
- #+@ ⇒ Object
- #-(other) ⇒ Object
- #-@ ⇒ Object
- #/(other) ⇒ Object
-
#<=>(other) ⇒ Integer?
Return a positive value if
self>other, zero ifself=other, and a negative value ifself<other. -
#[](index) ⇒ Integer?
Returns bits from the significand, ignoring the sign or the exponent.
-
#abs(a, round: MPFR.default_rounding) ⇒ Integer
Set self to the absolute value of
a, rounded int the directionround. -
#abs! ⇒ Integer
Set self to the absolute value of
self. -
#acos(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-cosine of
v, rounded in the directionround. -
#acosh(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the inverse hyperbolic cossine of
v, rounded in the directionround. -
#acos(v, round: MPFR.default_rounding) ⇒ Integer
Set self to acos(
v) divided by Pi, rounded in the directionround. -
#acosu(x, u, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-cosine(x) multiplied by u and divided by 2 Pi.
-
#add(a, b, round: MPFR.default_rounding) ⇒ Integer
Set the value of
selftoa+brounded in the directionround. -
#add!(b, round: MPFR.default_rounding) ⇒ Integer
Set the value of
selftoself+brounded in the directionround. -
#agm(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self to the arithmetic-geometric mean of
xandy, rounded in the directionround. -
#ai(x, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the Airy function Ai on
x, rounded in the directionround. -
#asin(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-sine of
v, rounded in the directionround. -
#asinh(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the inverse hyperbolic sine of
v, rounded in the directionround. -
#asin(v, round: MPFR.default_rounding) ⇒ Integer
Set self to asin(
v) divided by Pi, rounded in the directionround. -
#asinu(x, u, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-sine(x) multiplied by u and divided by 2 Pi.
-
#atan(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-tangent of
v, rounded in the directionround. -
#atan2(y, x, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-tangent2 of
yandx, rounded in the directionround. -
#atan2pi(y, x, round: MPFR.default_rounding) ⇒ Integer
The same as #atan2u with u = 2.
-
#atan2u(y, x, u, round: MPFR.default_rounding) ⇒ Integer
Behaves similarly to #atan2 except the result is multiplied by
uand divided by 2 Pi. -
#atanh(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the inverse hyperbolic tangent of
v, rounded in the directionround. -
#atanpi(v, round: MPFR.default_rounding) ⇒ Integer
Set self to atan(
v) divided by Pi, rounded in the directionround. -
#atanu(x, u, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-tangent(x) multiplied by u and divided by 2 Pi.
-
#beta(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the Beta function at arguments
xandx. -
#cbrt(a, round: MPFR.default_rounding) ⇒ Integer
Set self to the cubic root of
a, rounded int the directionround. -
#cbrt!(round: MPFR.default_rounding) ⇒ Integer
Set self to the cubic root of
self, rounded int the directionround. -
#ceil(op) ⇒ Integer
Set self to
oprounded to the next higher or equal representable integer. -
#ceil! ⇒ Integer
Set self to self rounded to the next higher or equal representable integer.
-
#coerce(num) ⇒ Array<MPFR,Rational>
Returns an array with both
numandselfrepresented as MPFR objects. -
#compound(x, n, round: MPFR.default_rounding) ⇒ Integer
Set self to the power
nof one plusx, following IEEE 754 for the special cases and exceptions. -
#cos(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the cosine of
v, rounded in the directionround. -
#cosh(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the hyperbolic cosine of
v, rounded in the directionround. -
#cospi(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the cosine of
vmultiplied by Pi, rounded in the directionround. -
#cosu(x, u, round: MPFR.default_rounding) ⇒ Integer
Set self to the cosine of
x, multiplied by 2 Pi and divided byu, rounded in the directionround. -
#cot(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the cotangent of
v, rounded in the directionround. -
#coth(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the hyperbolic cotangent of
v, rounded in the directionround. -
#cot(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the cosecant of
v, rounded in the directionround. -
#csch(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the hyperbolic cosecant of
v, rounded in the directionround. -
#digamma(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the Digamma (sometimes also called Psi) function on
v, rounded in the directionround. -
#dim(a, b, round: MPFR.default_rounding) ⇒ Integer
Set
selfto the positive difference ofaandb. -
#div(a, b, round: MPFR.default_rounding) ⇒ Integer
Set the value of
selftoa/brounded in the directionround. -
#div!(b, round: MPFR.default_rounding) ⇒ Integer
Set the value of
selftoself/brounded in the directionround. -
#div_2i(a, n, round: MPFR.default_rounding) ⇒ Integer
Set self to
adivided by 2 raised ton, rounded int the directionround. -
#div_2i!(n, round: MPFR.default_rounding) ⇒ Integer
Set self to
selfdivided by 2 raised ton, rounded int the directionround. -
#eint(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the exponential integral of
v, rounded in the directionround. -
#erandom(round: MPFR.default_rounding) ⇒ Integer
Generate a random floating-point number according to an exponential distribution, with mean one.
-
#erf(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the error function on 'v', rounded in the direction
round. -
#erfc(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the complementary error function on 'v', rounded in the direction
round. -
#exp(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the exponential of
v, rounded in the directionround. -
#exp10(v, round: MPFR.default_rounding) ⇒ Integer
Set self to 10 power of
v, rounded in the directionround. -
#exp10m1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to 10 power of
vfollowed by a subtraction by one, rounded in the directionround. -
#exp2(v, round: MPFR.default_rounding) ⇒ Integer
Set self to 2 power of
v, rounded in the directionround. -
#exp2m1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to 2 power of
vfollowed by a subtraction by one, rounded in the directionround. -
#expm1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the exponential of
vfollowed by a subtraction by one, rounded in the directionround. -
#exponent ⇒ Integer?
Return the exponent of
self, assuming thatselfis a non-zero ordinary number and the significand is considered in [1, 2). -
#exponent=(e) ⇒ Object
Set the exponent of
selftoe, assuming the significand in [1, 2). -
#fac(n, round: MPFR.default_rounding) ⇒ Integer
Set self to the factorial of
n, rounded int the directionround. -
#finite? ⇒ Boolean
Tels if self is neither an infinity nor NaN.
-
#floor(op) ⇒ Integer
Set self to
oprounded to the next lower or equal representable integer. -
#floor! ⇒ Integer
Set self to self rounded to the next lower or equal representable integer.
-
#fma(a, b, c, round: MPFR.default_rounding) ⇒ Integer
Set self to (
atimesb) plusc, rounded in the directionround. -
#fma!(a, b, round: MPFR.default_rounding) ⇒ Integer
Set self to (
atimesb) plusself, rounded in the directionround. -
#fmma(a, b, c, d, round: MPFR.default_rounding) ⇒ Integer
Set self to (
atimesb) plus (ctimesd), rounded in the directionround. -
#fmms(a, b, c, d, round: MPFR.default_rounding) ⇒ Integer
Set self to (
atimesb) minus (ctimesd), rounded in the directionround. -
#fmod(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self the the value of
x - ny, rounded according to the directionround. -
#fms(a, b, c, round: MPFR.default_rounding) ⇒ Integer
Set self to (
atimesb) minusc, rounded in the directionround. -
#fms!(a, b, round: MPFR.default_rounding) ⇒ Integer
Set self to (
atimesb) minusself, rounded in the directionround. -
#frac(op, round: MPFR.default_rounding) ⇒ Integer
Set self to the fractional part of
op, having the same sign asop, rounded in the directionround. -
#gamma(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the Gamma function on
v, , rounded in the directionround. -
#gamma_inc(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the incomplete Gamma function on
xandy, rounded in the directionround. -
#get_d_2exp(round: MPFR.default_rounding) ⇒ Array<Float, Integer>
Return
[d, e]such that 1 ≤ abs(d) < 2 anddtimes 2 raised toeequalsselfrounded to double precision, using the given rounding mode. -
#get_i_2exp ⇒ Array<Integer, Integer>
Return
[i, e]such thatselfexactly equalsitimes 2 raised to the powere. -
#hypot(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self to the Euclidean norm of
xandy, i.e. -
#infinite? ⇒ Boolean
Tels if self is an infinity.
-
#new(value = Float::NAN, round: MPFR.default_rounding, prec: MPFR.default_prec) ⇒ MPFR
constructor
Create a new MPFR object of a given precision (number of bits), and optionaly initializes it with the given value in the rounding direction.
-
#integer? ⇒ Boolean
Tels if the fractional part of self is null.
-
#j0(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the first kind Bessel function of order 0, on
v, rounded in the directionround. -
#j1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the first kind Bessel function of order 1, on
v, rounded in the directionround. -
#jn(n, v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the first kind Bessel function of order
n, onv, rounded in the directionround. -
#li2(v, round: MPFR.default_rounding) ⇒ Integer
Set self to real part of the dilogarithm of
v, rounded in the directionround. -
#lngamma(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the logarithm of the Gamma function on
v, rounded in the directionround. -
#log(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the natural logarithm of
v, rounded in the directionround. -
#log10(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the base ten logarithm of
v, rounded in the directionround. -
#log10p1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the logarithm of one plus
vin radix ten, rounded in the directionround. -
#logp1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the logarithm of one plus
v, rounded in the directionround. -
#log2(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the base 2 logarithm of
v, rounded in the directionround. -
#log2p1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the logarithm of one plus
vin radix two, rounded in the directionround. -
#max(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self to the maximum of
xandy. -
#min(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self to the minimum of
xandy. -
#mul(a, b, round: MPFR.default_rounding) ⇒ Integer
Set the value of
selftoatimesbrounded in the directionround. -
#mul!(b, round: MPFR.default_rounding) ⇒ Integer
Set the value of
selftoselftimesbrounded in the directionround. -
#mul_2i(a, n, round: MPFR.default_rounding) ⇒ Integer
Set self to
atimes 2 raised ton, rounded int the directionround. -
#mul_2i!(n, round: MPFR.default_rounding) ⇒ Integer
Set self to
selftimes 2 raised ton, rounded int the directionround. -
#nan? ⇒ Boolean
Tels if self does not represent a number.
-
#neg(a, round: MPFR.default_rounding) ⇒ Integer
Set self to
-a, rounded int the directionround. -
#neg! ⇒ Integer
Set self
-self. -
#nextabove! ⇒ self
Set self to the next (toward +Infinity) representable value.
-
#nextbelow! ⇒ self
Set self to the previous (toward -Infinity) representable value.
-
#nrandom(round: MPFR.default_rounding) ⇒ Integer
Generate a random floating-point number according to a standard normal Gaussian distribution (with mean zero and variance one).
-
#pow(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self to
xraised toy, rounded in the directionround. -
#prec ⇒ Integer
Return the precision of
self, i.e., the number of bits used to store its significand. -
#prec=(precrb) ⇒ Object
Set the precision of
selfto be exactlyprecbits, and set its value to NaN. -
#prec_round(prec, round: MPFR.default_rounding) ⇒ Integer
Round
selfaccording toroundwith precisionprec. -
#rec_sqrt(a, round: MPFR.default_rounding) ⇒ Integer
Set self to the reciprocal square root of
a, rounded int the directionround. -
#rec_sqrt!(round: MPFR.default_rounding) ⇒ Integer
Set self to the reciprocal square root of
self, rounded int the directionround. -
#remainder(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self the the value of
x - ny, rounded according to the directionround. -
#rint(op, round: MPFR.default_rounding) ⇒ Integer
Set self to
oprounded to the nearest representable integer in the directionround. -
#rint!(round: MPFR.default_rounding) ⇒ Integer
Set self to self rounded to the nearest representable integer in the direction
round. -
#rint_ceil(op, round: MPFR.default_rounding) ⇒ Ingeger
Set self to
oprounded to the next higher or equal integer. -
#rint_floor(op, round: MPFR.default_rounding) ⇒ Ingeger
Set self to
oprounded to the next lower or equal integer. -
#rint_round(op, round: MPFR.default_rounding) ⇒ Ingeger
Set self to
oprounded to the nearest integer, rounding halfway cases away from zero. -
#rint_roundeven(op, round: MPFR.default_rounding) ⇒ Ingeger
Set self to
oprounded to the nearest integer, rounding halfway cases to the nearest even integer. -
#rint_trunc(op, round: MPFR.default_rounding) ⇒ Ingeger
Set self to
oprounded to the next integer toward zero. -
#rootn(a, n, round: MPFR.default_rounding) ⇒ Integer
Set self to the nth root of
a, rounded int the directionround. -
#rootn!(n, round: MPFR.default_rounding) ⇒ Integer
Set self to the nth root of
self, rounded int the directionround. -
#round(op) ⇒ Integer
Set self to
oprounded to the nearest representable integer, rounding halfway cases away from zero. -
#round! ⇒ Integer
Set self to self rounded to the nearest representable integer, rounding halfway cases away from zero.
-
#roundeven(op) ⇒ Integer
Set self to
oprounded to the nearest representable integer, rounding halfway cases with the even-rounding rule. -
#roundeven! ⇒ Integer
Set self to self rounded to the nearest representable integer, rounding halfway cases with the even-rounding rule.
-
#cot(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the secant of
v, rounded in the directionround. -
#sech(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the hyperbolic secant of
v, rounded in the directionround. -
#set(value, round: MPFR.default_rounding) ⇒ Integer
Set the value of the MPFR object.
-
#set_catalan(round: MPFR.default_rounding) ⇒ Integer
Set
selfto the value of of Catalan's constant 0.915..., rounded in the given direction. -
#set_euler(round: MPFR.default_rounding) ⇒ Integer
Set
selfto the value of of Euler's constant 0.577..., rounded in the given direction. -
#set_infinity(sign = 1) ⇒ self
Set
selfto infinity. -
#set_log2(round: MPFR.default_rounding) ⇒ Integer
Set
selfto the logarithm of 2, rounded in the given direction. -
#set_nan ⇒ self
Set
selfto NaN. -
#set_pi(round: MPFR.default_rounding) ⇒ Integer
Set
selfto the value of Pi, rounded in the given direction. -
#set_zero(sign = 1) ⇒ self
Set
selfto zero. -
#sign ⇒ Ingeger?
Either -1 or 1.
-
#sign=(s) ⇒ Object
Set the sign of
selfto the sign of the argument. -
#sin(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the sine of
v, rounded in the directionround. -
#sinh(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the hyperbolic sine of
v, rounded in the directionround. -
#sinpi(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the sine of
vmultiplied by Pi, rounded in the directionround. -
#cosu(x, u, round: MPFR.default_rounding) ⇒ Integer
Set self to the sine of
x, multiplied by 2 Pi and divided byu, rounded in the directionround. -
#sqr(a, round: MPFR.default_rounding) ⇒ Integer
Set self to the square of
a, rounded int the directionround. -
#sqr!(round: MPFR.default_rounding) ⇒ Integer
Set self to the square of
self, rounded int the directionround. -
#sqrt(a, round: MPFR.default_rounding) ⇒ Integer
Set self to the square root of
a, rounded int the directionround. -
#sqrt!(round: MPFR.default_rounding) ⇒ Integer
Set self to the square root of
self, rounded int the directionround. -
#sub(a, b, round: MPFR.default_rounding) ⇒ Integer
Set the value of
selftoa-brounded in the directionround. -
#sub!(b, round: MPFR.default_rounding) ⇒ Integer
Set the value of
selftoself-brounded in the directionround. -
#subnormalize(t, round: MPFR.default_rounding) ⇒ Integer
This function rounds self emulating subnormal number arithmetic.
-
#tan(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the tangent of
v, rounded in the directionround. -
#tanh(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the hyperbolic tangent of
v, rounded in the directionround. -
#tanpi(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the tangent of
vmultiplied by Pi, rounded in the directionround. -
#cosu(x, u, round: MPFR.default_rounding) ⇒ Integer
Set self to the tangent of
x, multiplied by 2 Pi and divided byu, rounded in the directionround. - #to_f(round: MPFR.default_rounding) ⇒ Float
- #to_i(round: MPFR.default_rounding) ⇒ Integer
- #to_mpfr ⇒ self
-
#to_r ⇒ Rational
Convert the MPFR object to a rational.
-
#to_s(conv: 'g', round: :nearest, decimals: nil) ⇒ String
(also: #inspect)
Return a string representation of the number.
- #to_sollya ⇒ Object
-
#trunc(op) ⇒ Integer
Set self to
oprounded to the next representable integer toward zero. -
#trunc! ⇒ Integer
Set self to self rounded to the next representable integer toward zero.
-
#urandom(round: MPFR.default_rounding) ⇒ Integer
Generate a uniformly distributed random float.
-
#urandomb ⇒ Integer
Generate a uniformly distributed random float in the interval 0 ≤ self < 1.
-
#y1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the second kind Bessel function of order 0 on
v, rounded in the directionround. -
#y1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the second kind Bessel function of order 1 on
v, rounded in the directionround. -
#yn(n, v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the second kind Bessel function of order
nonv, rounded in the directionround. -
#zero? ⇒ Boolean
Tels if self is zero.
-
#zeta(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the Riemann Zeta function on
v, rounded in the directionround.
Constructor Details
#new(value = Float::NAN, round: MPFR.default_rounding, prec: MPFR.default_prec) ⇒ MPFR
Create a new MPFR object of a given precision (number of bits), and optionaly initializes it with the given value in the rounding direction.
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
# File 'ext/mpfr_rb.c', line 403 static VALUE mpfrrb_initialize(int argc, VALUE *argv, VALUE self) { if (argc == 0) { mpfr_init(mpfrrb_rb2ref(self)); return self; } VALUE valrb; VALUE kw; const ID kwkeys[2] = {id_prec, id_round}; VALUE kwvalues[2] = {Qundef, Qundef}; mpfr_rnd_t rnd = mpfrrb_default_rounding; mpfr_prec_t prec = mpfr_get_default_prec(); rb_scan_args(argc, argv, "01:", &valrb, &kw); if (!NIL_P(kw)) { rb_get_kwargs(kw, kwkeys, 0, 2, kwvalues); if (kwvalues[0] != Qundef) { if (!rb_integer_type_p(kwvalues[0])) { rb_raise(rb_eTypeError, "precision must be an integer, not a %s", rb_obj_classname(kwvalues[0])); } prec = NUM2ULL(kwvalues[0]); if (prec < MPFR_PREC_MIN || prec > MPFR_PREC_MAX) { rb_raise(rb_eRangeError, "precision must be between %d and %ld, %ld is invalid", MPFR_PREC_MIN, MPFR_PREC_MAX, prec); } } if (kwvalues[1] != Qundef) { rnd = mpfrrb_sym2rnd(kwvalues[1]); } } mpfr_ptr mp = mpfrrb_rb2ref(self); mpfr_init2(mp, prec); if (!NIL_P(valrb)) { mpfrrb_set_internal(mp, rnd, valrb, self); } return self; } |
Class Method Details
.default_prec ⇒ Integer
Return the current default MPFR precision in bits.
143 144 145 146 147 |
# File 'ext/mpfr_rb.c', line 143 static VALUE mpfrrb_get_default_prec(VALUE self) { (void)self; return LL2NUM(mpfr_get_default_prec()); } |
.default_prec=(prec) ⇒ Integer
Set the default precision to be exactly prec bits, where prec can be any integer between PREC_MIN and PREC_MAX.
The precision of a variable means the number of bits used to store its significand.
All subsequent calls to MPFR.new will use this precision, but previously initialized variables are unaffected.
The default precision is set to 53 bits initially.
128 129 130 131 132 133 134 135 136 |
# File 'ext/mpfr_rb.c', line 128 static VALUE mpfrrb_set_default_prec(VALUE self, VALUE prec) { mpfr_prec_t p = NUM2LL(prec); if (p < MPFR_PREC_MIN || p > MPFR_PREC_MAX) { rb_raise(rb_eRangeError, "precision must be between %d and %ld, %ld is invalid", MPFR_PREC_MIN, MPFR_PREC_MAX, p); } mpfr_set_default_prec(p); return prec; } |
.default_rounding ⇒ Symbol
Return the default rounding used when the :round keyword is not set.
296 297 298 299 300 |
# File 'ext/mpfr_rb.c', line 296 static VALUE mpfrrb_get_default_rounding(VALUE self) { (void)self; return rb_id2sym(mpfrrb_default_rounding_id); } |
.default_rounding=(rounding) ⇒ Symbol
Set the default rounding used when the :round keyword is not set.
The value can be:
:rndn,:round_nearest,:nearest: round to nearest, with the even rounding rule (roundTiesToEven in IEEE 754).:rndu,:round_up,:up: round toward positive infinity (roundTowardPositive in IEEE 754). In case the number to be rounded lies exactly in the middle between two consecutive representable numbers, it is rounded to the one with an even significand; in radix 2, this means that the least significant bit is 0.:rndd,:round_down,:down: round toward negative infinity (roundTowardNegative in IEEE 754).:rndz,:toward_zero,:zero: round toward zero (roundTowardZero in IEEE 754).:rnda,:away_from_zero,:away: round away from zero.:rndf,:faithful_rounding,:faithful: faithful rounding. This feature is currently experimental.:rndna,:nearest_ties_away
280 281 282 283 284 285 286 287 288 289 |
# File 'ext/mpfr_rb.c', line 280 static VALUE mpfrrb_set_default_rounding(VALUE self, VALUE rounding) { if (!RB_SYMBOL_P(rounding)) rb_raise(rb_eTypeError, "expecting a symbol, not a %s", rb_obj_classname(rounding)); mpfrrb_default_rounding = mpfrrb_sym2rnd(rounding); mpfrrb_default_rounding_id = rb_sym2id(rounding); return rounding; } |
.emax ⇒ Integer
Return the (current) largest exponents allowed for a floating-point variable. The largest value has the form (1 − epsilon) times 2 raised to the largest exponent, where epsilon depends on the precision of the considered variable.
3856 3857 3858 3859 3860 |
# File 'ext/mpfr_rb.c', line 3856 static VALUE mpfrrb_get_emax(VALUE self) { (void)self; return LL2NUM(mpfr_get_emax()); } |
.emax=(e) ⇒ Integer
If emin > emax and a floating-point value needs to be produced as output, the behavior is undefined.
Set the largest exponents allowed for a floating-point variable.
For the subsequent operations, it is the user's responsibility to check that any floating-point value used as an input is in the new exponent range (for example using #check_range). If a floating-point value outside the new exponent range is used as an input, the default behavior is undefined.
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 |
# File 'ext/mpfr_rb.c', line 3872 static VALUE mpfrrb_set_emax(VALUE self, VALUE e) { (void)self; mpfr_exp_t v = NUM2LL(e); if (v < mpfr_get_emax_min() || v > mpfr_get_emax_max()) { rb_raise(rb_eRangeError, "emax must be between %ld and %ld", mpfr_get_emax_min(), mpfr_get_emax_max()); } mpfr_set_emax(v); return e; } |
.emin ⇒ Integer
Return the (current) smallest exponents allowed for a floating-point variable. The smallest positive value of a floating-point variable is one half times 2 raised to the smallest exponent.
3822 3823 3824 3825 3826 |
# File 'ext/mpfr_rb.c', line 3822 static VALUE mpfrrb_get_emin(VALUE self) { (void)self; return LL2NUM(mpfr_get_emin()); } |
.emin=(e) ⇒ Integer
If emin > emax and a floating-point value needs to be produced as output, the behavior is undefined.
Set the smallest exponents allowed for a floating-point variable.
For the subsequent operations, it is the user's responsibility to check that any floating-point value used as an input is in the new exponent range (for example using #check_range). If a floating-point value outside the new exponent range is used as an input, the default behavior is undefined.
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 |
# File 'ext/mpfr_rb.c', line 3838 static VALUE mpfrrb_set_emin(VALUE self, VALUE e) { (void)self; mpfr_exp_t v = NUM2LL(e); if (v < mpfr_get_emin_min() || v > mpfr_get_emin_max()) { rb_raise(rb_eRangeError, "emin must be between %ld and %ld", mpfr_get_emin_min(), mpfr_get_emin_max()); } mpfr_set_emin(v); return e; } |
.free_cache ⇒ Object
Free all caches and pools used by MPFR internally.
3727 3728 3729 3730 3731 |
# File 'ext/mpfr_rb.c', line 3727 static VALUE mpfrrb_free_cache(VALUE self) { mpfr_free_cache(); return self; } |
.i_2exp(i, e) ⇒ MPFR
Return a new MPFR object from the value of i multiplied by two to the power e.
The precision of the returned object is set to accomodate i exactly.
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 |
# File 'ext/mpfr_rb.c', line 1044 static VALUE mpfrrb_i_2exp(VALUE self, VALUE i, VALUE e) { (void)self; mpfr_exp_t ve = NUM2LL(e); VALUE ret; if (RB_FIXNUM_P(i)) { long int v = NUM2LL(i); mpfr_prec_t p; if (v > 0) { p = (mpfr_prec_t)ceil(log2((double)(v + 1))); } else if (v < 0) { p = (mpfr_prec_t)ceil(log2((double)(1 - v))); } else { p = 1; } ret = mpfrrb_alloc(c_MPFR); mpfr_ptr mp = mpfrrb_rb2ref(ret); mpfr_init2(mp, p); mpfr_set_si_2exp(mp, v, ve, MPFR_RNDN); } else if (RB_INTEGER_TYPE_P(i)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(i, mpz); int nlz_bits_ret; size_t nb_bytes = rb_absint_size(i, &nlz_bits_ret); mpfr_prec_t p = nb_bytes*8 - nlz_bits_ret; ret = mpfrrb_alloc(c_MPFR); mpfr_ptr mp = mpfrrb_rb2ref(ret); mpfr_init2(mp, p); mpfr_set_z_2exp(mp, mpz, ve, MPFR_RNDN); mpz_clear(mpz); } else { rb_raise(rb_eTypeError, "expecting an integer, not a %s", rb_obj_classname(i)); } return ret; } |
.modf(ipart, fpart, x, round: MPFR.default_rounding) ⇒ Integer
Set simultaneously ipart to the integral part of x and fpart to the fractional part of x, rounded in the direction round
with the corresponding precision of ipart and fpart.
It is equivalent to ipart.trunc(x, round: rnd) and fpart.frac(x, round: rnd).
The variables ipart and fpart must be different.
Return 0 iff both results are exact.
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 |
# File 'ext/mpfr_rb.c', line 3546 static VALUE mpfrrb_modf(int argc, VALUE *argv, VALUE self) { VALUE ipart, fpart, x; mpfr_rnd_t rnd = mpfrrb_get_a_b_c_round(argc, argv, &ipart, &fpart, &x); mpfr_ptr iop = mpfrrb_rb2ref(ipart); mpfr_ptr fop = mpfrrb_rb2ref(fpart); mpfr_ptr op = mpfrrb_rb2ref(x); int r = mpfr_modf(iop, fop, op, rnd); return INT2NUM(r); } |
.patches ⇒ String
Return a string containing the ids of the patches applied to the MPFR library (contents of the PATCHES file), separated by spaces.
116 117 118 119 |
# File 'ext/mpfr_rb.c', line 116 static VALUE mpfrrb_get_patches(VALUE self) { return rb_str_freeze(rb_str_new_cstr(mpfr_get_patches())); } |
.version ⇒ String
Return the MPFR version
107 108 109 110 |
# File 'ext/mpfr_rb.c', line 107 static VALUE mpfrrb_get_version(VALUE self) { return rb_str_freeze(rb_str_new_cstr(mpfr_get_version())); } |
Instance Method Details
#%(other) ⇒ Object
47 48 49 50 51 52 53 |
# File 'lib/sollya.rb', line 47 def %(other) return to_r % other if other.is_a?(Rational) other = other.to_mpfr r = MPFR.new(prec: [prec, other.prec].max) r.fmod(self, other) r end |
#*(other) ⇒ Object
31 32 33 34 35 36 37 |
# File 'lib/sollya.rb', line 31 def *(other) return to_r * other if other.is_a?(Rational) other = other.to_mpfr r = MPFR.new(prec: [prec, other.prec].max) r.mul(self, other) r end |
#**(other) ⇒ Object
55 56 57 58 59 60 |
# File 'lib/sollya.rb', line 55 def **(other) other = other.to_mpfr r = MPFR.new(prec: [prec, other.prec].max) r.pow(self, other) r end |
#+(other) ⇒ Object
15 16 17 18 19 20 21 |
# File 'lib/sollya.rb', line 15 def +(other) return to_r + other if other.is_a?(Rational) other = other.to_mpfr r = MPFR.new(prec: [prec, other.prec].max) r.add(self, other) r end |
#+@ ⇒ Object
5 6 7 |
# File 'lib/sollya.rb', line 5 def +@ self end |
#-(other) ⇒ Object
23 24 25 26 27 28 29 |
# File 'lib/sollya.rb', line 23 def -(other) return to_r - other if other.is_a?(Rational) other = other.to_mpfr r = MPFR.new(prec: [prec, other.prec].max) r.sub(self, other) r end |
#-@ ⇒ Object
9 10 11 12 13 |
# File 'lib/sollya.rb', line 9 def -@ r = MPFR.new(prec: prec) r.neg(self) r end |
#/(other) ⇒ Object
39 40 41 42 43 44 45 |
# File 'lib/sollya.rb', line 39 def /(other) return to_r / other if other.is_a?(Rational) other = other.to_mpfr r = MPFR.new(prec: [prec, other.prec].max) r.div(self, other) r end |
#<=>(other) ⇒ Integer?
Return a positive value if self > other, zero if self = other, and a negative value if self < other.
Returns nil if other is not comparable with self.
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 |
# File 'ext/mpfr_rb.c', line 1993 static VALUE mpfrrb_cmp(VALUE self, VALUE other) { mpfr_ptr mp = mpfrrb_rb2ref(self); int r; if (mpfr_nan_p(mp)) { return Qnil; } if (RB_FLOAT_TYPE_P(other)) { r = mpfr_cmp_d(mp, NUM2DBL(other)); } else if (RB_FIXNUM_P(other)) { r = mpfr_cmp_si(mp, NUM2LL(other)); } else if (RB_TYPE_P(other, T_BIGNUM)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(other, mpz); r = mpfr_cmp_z(mp, mpz); mpz_clear(mpz); } else if (RB_TYPE_P(other, T_RATIONAL)) { mpq_t mpq; mpq_init(mpq); mpfrrb_rational_to_mpq(other, mpq); r = mpfr_cmp_q(mp, mpq); mpq_clear(mpq); } else if (rb_obj_is_kind_of(other, c_MPFR)) { r = mpfr_cmp(mp, mpfrrb_rb2ref(other)); } else { return Qnil; } return INT2NUM(r); } |
#[](index) ⇒ Integer?
Returns bits from the significand, ignoring the sign or the exponent.
The most significand bit is indexed at 0, the least significand bit is indexed at 1 - prec.
In case self is not finite (an infinite or NaN), nil is retured.
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 |
# File 'ext/mpfr_rb.c', line 4080 static VALUE mpfrrb_index(VALUE self, VALUE index) { mpfr_ptr mp = mpfrrb_rb2ref(self); if (mpfr_zero_p(mp)) { return INT2NUM(0); } else if (!mpfr_regular_p(mp)) { return Qnil; } if (RB_FIXNUM_P(index)) { return mpfrrb_index_from_integer(mp, NUM2INT(index)); } else if (rb_class_of(index) == rb_cRange) { VALUE begrb, endrb; int excl; rb_range_values(index, &begrb, &endrb, &excl); int beg = NUM2INT(begrb); int end = NUM2INT(endrb); int len = (end > beg ? end - beg : beg - end) + (excl ? 0 : 1); if (len < 1) { return Qnil; } if (beg < end) { end = beg + len - 1; } else { end = beg - len + 1; int t = end; end = beg; beg = t; } return mpfrrb_index_from_range(mp, beg, end); } else { rb_raise(rb_eTypeError, "expecging an integer or a range, got a %s", rb_obj_classname(index)); } } |
#abs(a, round: MPFR.default_rounding) ⇒ Integer
Set self to the absolute value of a, rounded int the direction round.
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 |
# File 'ext/mpfr_rb.c', line 1675 static VALUE mpfrrb_abs(int argc, VALUE *argv, VALUE self) { VALUE a; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &a); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(a)) { MPFR_DECL_INIT(mpa, 53); mpfr_set_d(mpa, NUM2DBL(a), MPFR_RNDN); r = mpfr_abs(mpr, mpa, rnd); } else if (RB_FIXNUM_P(a)) { MPFR_DECL_INIT(mpa, 64); mpfr_set_si(mpa, NUM2LL(a), MPFR_RNDN); r = mpfr_abs(mpr, mpa, rnd); } else { a = mpfrrb_object_to_mpfr(a); r = mpfr_abs(mpr, mpfrrb_rb2ref(a), rnd); } return INT2NUM(r); } |
#abs! ⇒ Integer
Set self to the absolute value of self.
1700 1701 1702 1703 1704 1705 |
# File 'ext/mpfr_rb.c', line 1700 static VALUE mpfrrb_abs_B(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_abs(mp, mp, MPFR_RNDN); return INT2NUM(r); } |
#acos(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-cosine of v, rounded in the direction round.
Note that since acos(-1) returns the floating-point number closest to Pi according to the given rounding mode,
this number might not be in the output range 0 ≤ self < Pi of the arc-cosine function; still, the result lies in the image of the output range by the rounding function.
The same holds for asin(-1), asin(1), atan(-Inf), atan(+Inf) or for atan(v) with large v and small precision of self.
2860 2861 2862 2863 |
# File 'ext/mpfr_rb.c', line 2860 static VALUE mpfrrb_acos(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(acos); } |
#acosh(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the inverse hyperbolic cossine of v, rounded in the direction round.
3078 3079 3080 3081 |
# File 'ext/mpfr_rb.c', line 3078 static VALUE mpfrrb_acosh(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(acosh); } |
#acos(v, round: MPFR.default_rounding) ⇒ Integer
Set self to acos(v) divided by Pi, rounded in the direction round.
2932 2933 2934 2935 |
# File 'ext/mpfr_rb.c', line 2932 static VALUE mpfrrb_acospi(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(acospi); } |
#acosu(x, u, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-cosine(x) multiplied by u and divided by 2 Pi.
For example, if u equals 360, #acosu yields the arc-cosine in degrees.
2898 2899 2900 2901 |
# File 'ext/mpfr_rb.c', line 2898 static VALUE mpfrrb_acosu(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_UL_FUNC_BODY(acosu); } |
#add(a, b, round: MPFR.default_rounding) ⇒ Integer
Set the value of self to a + b rounded in the direction round.
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 |
# File 'ext/mpfr_rb.c', line 1089 static VALUE mpfrrb_add(int argc, VALUE *argv, VALUE self) { VALUE a, b; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &a, &b); a = mpfrrb_object_to_mpfr(a); mpfr_ptr mpr = mpfrrb_rb2ref(self); mpfr_ptr mpa = mpfrrb_rb2ref(a); int r; if (RB_FLOAT_TYPE_P(b)) { r = mpfr_add_d(mpr, mpa, NUM2DBL(b), rnd); } else if (RB_FIXNUM_P(b)) { r = mpfr_add_si(mpr, mpa, NUM2LL(b), rnd); } else if (RB_INTEGER_TYPE_P(b)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(b, mpz); r = mpfr_add_z(mpr, mpa, mpz, rnd); mpz_clear(mpz); } else if (RB_TYPE_P(b, T_RATIONAL)) { mpq_t mpq; mpq_init(mpq); mpfrrb_rational_to_mpq(b, mpq); r = mpfr_add_q(mpr, mpa, mpq, rnd); mpq_clear(mpq); } else { b = mpfrrb_object_to_mpfr(b); r = mpfr_add(mpr, mpa, mpfrrb_rb2ref(b), rnd); } return INT2NUM(r); } |
#add!(b, round: MPFR.default_rounding) ⇒ Integer
Set the value of self to self + b rounded in the direction round.
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 |
# File 'ext/mpfr_rb.c', line 1126 static VALUE mpfrrb_add_B(int argc, VALUE *argv, VALUE self) { VALUE b; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &b); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(b)) { r = mpfr_add_d(mpr, mpr, NUM2DBL(b), rnd); } else if (RB_FIXNUM_P(b)) { r = mpfr_add_si(mpr, mpr, NUM2LL(b), rnd); } else if (RB_INTEGER_TYPE_P(b)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(b, mpz); r = mpfr_add_z(mpr, mpr, mpz, rnd); mpz_clear(mpz); } else if (RB_TYPE_P(b, T_RATIONAL)) { mpq_t mpq; mpq_init(mpq); mpfrrb_rational_to_mpq(b, mpq); r = mpfr_add_q(mpr, mpr, mpq, rnd); mpq_clear(mpq); } else { b = mpfrrb_object_to_mpfr(b); r = mpfr_add(mpr, mpr, mpfrrb_rb2ref(b), rnd); } return INT2NUM(r); } |
#agm(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self to the arithmetic-geometric mean of x and y, rounded in the direction round.
The arithmetic-geometric mean is the common limit of the sequences u_n and v_n, where u_0 = x, v_0 = y, u_(n+1)
is the arithmetic mean of u_n and v_n, and v_(n+1) is the geometric mean of u_n and v_n.
If any operand is negative and the other one is not zero, set self to NaN.
If any operand is zero and the other one is finite (resp. infinite), set self to +0 (resp. NaN).
3311 3312 3313 3314 |
# File 'ext/mpfr_rb.c', line 3311 static VALUE mpfrrb_agm(int argc, VALUE *argv, VALUE self) { MPFRRB_TWO_ARG_FUNC_BODY(agm); } |
#ai(x, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the Airy function Ai on x, rounded in the direction round.
When x is NaN, self is always set to NaN.
When x is +Inf or -Inf, self is set to +0.
The current implementation is not intended to be used with large arguments. It works with abs(x) typically smaller than 500. For larger arguments, other methods should be used and will be implemented in a future version.
3328 3329 3330 3331 |
# File 'ext/mpfr_rb.c', line 3328 static VALUE mpfrrb_ai(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(ai); } |
#asin(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-sine of v, rounded in the direction round.
Note that since acos(-1) returns the floating-point number closest to Pi according to the given rounding mode,
this number might not be in the output range 0 ≤ self < Pi of the arc-cosine function; still, the result lies in the image of the output range by the rounding function.
The same holds for asin(-1), asin(1), atan(-Inf), atan(+Inf) or for atan(v) with large v and small precision of self.
2873 2874 2875 2876 |
# File 'ext/mpfr_rb.c', line 2873 static VALUE mpfrrb_asin(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(asin); } |
#asinh(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the inverse hyperbolic sine of v, rounded in the direction round.
3088 3089 3090 3091 |
# File 'ext/mpfr_rb.c', line 3088 static VALUE mpfrrb_asinh(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(asinh); } |
#asin(v, round: MPFR.default_rounding) ⇒ Integer
Set self to asin(v) divided by Pi, rounded in the direction round.
2942 2943 2944 2945 |
# File 'ext/mpfr_rb.c', line 2942 static VALUE mpfrrb_asinpi(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(asinpi); } |
#asinu(x, u, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-sine(x) multiplied by u and divided by 2 Pi.
For example, if u equals 360, #asinu yields the arc-sine in degrees.
2910 2911 2912 2913 |
# File 'ext/mpfr_rb.c', line 2910 static VALUE mpfrrb_asinu(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_UL_FUNC_BODY(asinu); } |
#atan(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-tangent of v, rounded in the direction round.
Note that since acos(-1) returns the floating-point number closest to Pi according to the given rounding mode,
this number might not be in the output range 0 ≤ self < Pi of the arc-cosine function; still, the result lies in the image of the output range by the rounding function.
The same holds for asin(-1), asin(1), atan(-Inf), atan(+Inf) or for atan(v) with large v and small precision of self.
2886 2887 2888 2889 |
# File 'ext/mpfr_rb.c', line 2886 static VALUE mpfrrb_atan(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(atan); } |
#atan2(y, x, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-tangent2 of y and x, rounded in the direction round.
If x > 0, then atan2(y, x) returns atan(y/x); if x < 0, then atan2(y, x) returns the sign of y multiplied
by Pi - atan(abs(y/x)), thus a number from -Pi to Pi.
As for #atan, in case the exact mathematical result is +Pi or -Pi, its rounded result might be outside the function output range.
Special values are handled as described in the ISO C99 and IEEE 754 standards for the atan2 function:
- atan2(+0, -0) returns +Pi.
- atan2(-0, -0) returns -Pi.
- atan2(+0, +0) returns +0.
- atan2(-0, +0) returns -0.
- atan2(+0, x) returns +Pi for x < 0.
- atan2(-0, x) returns -Pi for x < 0.
- atan2(+0, x) returns +0 for x > 0.
- atan2(-0, x) returns -0 for x > 0.
- atan2(y, 0) returns -Pi/2 for y < 0.
- atan2(y, 0) returns +Pi/2 for y > 0.
- atan2(+Inf, -Inf) returns +3*Pi/4.
- atan2(-Inf, -Inf) returns -3*Pi/4.
- atan2(+Inf, +Inf) returns +Pi/4.
- atan2(-Inf, +Inf) returns -Pi/4.
- atan2(+Inf, x) returns +Pi/2 for finite x.
- atan2(-Inf, x) returns -Pi/2 for finite x.
- atan2(y, -Inf) returns +Pi for finite y > 0.
- atan2(y, -Inf) returns -Pi for finite y < 0.
- atan2(y, +Inf) returns +0 for finite y > 0.
- atan2(y, +Inf) returns -0 for finite y < 0.
2987 2988 2989 2990 |
# File 'ext/mpfr_rb.c', line 2987 static VALUE mpfrrb_atan2(int argc, VALUE *argv, VALUE self) { MPFRRB_TWO_ARG_FUNC_BODY(atan2); } |
#atan2pi(y, x, round: MPFR.default_rounding) ⇒ Integer
The same as #atan2u with u = 2.
3008 3009 3010 3011 |
# File 'ext/mpfr_rb.c', line 3008 static VALUE mpfrrb_atan2pi(int argc, VALUE *argv, VALUE self) { MPFRRB_TWO_ARG_FUNC_BODY(atan2pi); } |
#atan2u(y, x, u, round: MPFR.default_rounding) ⇒ Integer
Behaves similarly to #atan2 except the result is multiplied by u and divided by 2 Pi.
2998 2999 3000 3001 |
# File 'ext/mpfr_rb.c', line 2998 static VALUE mpfrrb_atan2u(int argc, VALUE *argv, VALUE self) { MPFRRB_TWO_ARG_UL_FUNC_BODY(atan2u); } |
#atanh(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the inverse hyperbolic tangent of v, rounded in the direction round.
3098 3099 3100 3101 |
# File 'ext/mpfr_rb.c', line 3098 static VALUE mpfrrb_atanh(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(atanh); } |
#atanpi(v, round: MPFR.default_rounding) ⇒ Integer
Set self to atan(v) divided by Pi, rounded in the direction round.
2952 2953 2954 2955 |
# File 'ext/mpfr_rb.c', line 2952 static VALUE mpfrrb_atanpi(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(atanpi); } |
#atanu(x, u, round: MPFR.default_rounding) ⇒ Integer
Set self to the arc-tangent(x) multiplied by u and divided by 2 Pi.
For example, if u equals 360, #asinu yields the arc-tangent in degrees.
2922 2923 2924 2925 |
# File 'ext/mpfr_rb.c', line 2922 static VALUE mpfrrb_atanu(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_UL_FUNC_BODY(atanu); } |
#beta(x, y, round: MPFR.default_rounding) ⇒ Integer
The current code does not try to avoid internal overflow or underflow, and might use a huge internal precision in some cases.
Set self to the value of the Beta function at arguments x and x.
3182 3183 3184 3185 |
# File 'ext/mpfr_rb.c', line 3182 static VALUE mpfrrb_beta(int argc, VALUE *argv, VALUE self) { MPFRRB_TWO_ARG_FUNC_BODY(beta); } |
#cbrt(a, round: MPFR.default_rounding) ⇒ Integer
Set self to the cubic root of a, rounded int the direction round.
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 |
# File 'ext/mpfr_rb.c', line 1547 static VALUE mpfrrb_cbrt(int argc, VALUE *argv, VALUE self) { VALUE a; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &a); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(a)) { MPFR_DECL_INIT(mpa, 53); mpfr_set_d(mpa, NUM2DBL(a), MPFR_RNDN); r = mpfr_cbrt(mpr, mpa, rnd); } else if (RB_FIXNUM_P(a)) { MPFR_DECL_INIT(mpa, 64); mpfr_set_si(mpa, NUM2LL(a), MPFR_RNDN); r = mpfr_cbrt(mpr, mpa, rnd); } else { a = mpfrrb_object_to_mpfr(a); r = mpfr_cbrt(mpr, mpfrrb_rb2ref(a), rnd); } return INT2NUM(r); } |
#cbrt!(round: MPFR.default_rounding) ⇒ Integer
Set self to the cubic root of self, rounded int the direction round.
1574 1575 1576 1577 1578 1579 1580 |
# File 'ext/mpfr_rb.c', line 1574 static VALUE mpfrrb_cbrt_B(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_cbrt(mp, mp, rnd); return INT2NUM(r); } |
#ceil(op) ⇒ Integer
Set self to op rounded to the next higher or equal representable integer.
3347 3348 3349 3350 |
# File 'ext/mpfr_rb.c', line 3347 static VALUE mpfrrb_ceil(VALUE self, VALUE op) { MPFRRB_ONE_ARG_NO_RND_FUNC_BODY(ceil); } |
#ceil! ⇒ Integer
Set self to self rounded to the next higher or equal representable integer.
3404 3405 3406 3407 3408 |
# File 'ext/mpfr_rb.c', line 3404 static VALUE mpfrrb_ceil_B(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); return INT2NUM(mpfr_ceil(mp, mp)); } |
#coerce(num) ⇒ Array<MPFR,Rational>
Returns an array with both num and self represented as MPFR objects.
If num is a Rational, the returned array contains both num and self as rationals.
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 |
# File 'ext/mpfr_rb.c', line 2030 static VALUE mpfrrb_coerce(VALUE self, VALUE num) { if (RB_FLOAT_TYPE_P(num)) { return rb_ary_new_from_args(2, mpfrrb_Float_to_mpfr(num), self); } else if (RB_INTEGER_TYPE_P(num)) { return rb_ary_new_from_args(2, mpfrrb_Integer_to_mpfr(num), self); } else if (RB_TYPE_P(num, T_RATIONAL)) { return rb_ary_new_from_args(2, num, mpfrrb_to_r(self)); } else { rb_raise(rb_eArgError, "invalid value: %" PRIsVALUE, num); } } |
#compound(x, n, round: MPFR.default_rounding) ⇒ Integer
Set self to the power n of one plus x, following IEEE 754 for the special cases and exceptions.
In particular:
- When
x< -1, self is set to NaN. - When
nis zero andxis NaN (like any value greater or equal to -1), self is set to 1. - When
x= -1, self is set to +Inf forn< 0, and to +0 forn> 0. The other special cases follow the usual rules.
2708 2709 2710 2711 |
# File 'ext/mpfr_rb.c', line 2708 static VALUE mpfrrb_compound(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_SL_FUNC_BODY(compound_si); } |
#cos(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the cosine of v, rounded in the direction round.
2718 2719 2720 2721 |
# File 'ext/mpfr_rb.c', line 2718 static VALUE mpfrrb_cos(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(cos); } |
#cosh(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the hyperbolic cosine of v, rounded in the direction round.
3018 3019 3020 3021 |
# File 'ext/mpfr_rb.c', line 3018 static VALUE mpfrrb_cosh(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(cosh); } |
#cospi(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the cosine of v multiplied by Pi, rounded in the direction round.
See the description of #cosu for special values.
2795 2796 2797 2798 |
# File 'ext/mpfr_rb.c', line 2795 static VALUE mpfrrb_cospi(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(cospi); } |
#cosu(x, u, round: MPFR.default_rounding) ⇒ Integer
Set self to the cosine of x, multiplied by 2 Pi and divided by u, rounded in the direction round.
For example, if u equals 360, one gets the cosine for x in degrees.
When op multiplied by 2 and divided by u is a half-integer, the result is +0, following IEEE 754 (cosPi), so that the function is even.
2753 2754 2755 2756 |
# File 'ext/mpfr_rb.c', line 2753 static VALUE mpfrrb_cosu(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_UL_FUNC_BODY(cosu); } |
#cot(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the cotangent of v, rounded in the direction round.
2847 2848 2849 2850 |
# File 'ext/mpfr_rb.c', line 2847 static VALUE mpfrrb_cot(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(cot); } |
#coth(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the hyperbolic cotangent of v, rounded in the direction round.
3068 3069 3070 3071 |
# File 'ext/mpfr_rb.c', line 3068 static VALUE mpfrrb_coth(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(coth); } |
#cot(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the cosecant of v, rounded in the direction round.
2837 2838 2839 2840 |
# File 'ext/mpfr_rb.c', line 2837 static VALUE mpfrrb_csc(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(csc); } |
#csch(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the hyperbolic cosecant of v, rounded in the direction round.
3058 3059 3060 3061 |
# File 'ext/mpfr_rb.c', line 3058 static VALUE mpfrrb_csch(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(csch); } |
#digamma(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the Digamma (sometimes also called Psi) function on v, rounded in the directionround.
When v is a negative integer, set self to NaN.
3171 3172 3173 3174 |
# File 'ext/mpfr_rb.c', line 3171 static VALUE mpfrrb_digamma(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(digamma); } |
#dim(a, b, round: MPFR.default_rounding) ⇒ Integer
Set self to the positive difference of a and b.
That is: a - b rounded in the direction round if a > b, +0 if a ≤ b, and NaN if a or b is NaN.
1716 1717 1718 1719 1720 1721 1722 1723 1724 |
# File 'ext/mpfr_rb.c', line 1716 static VALUE mpfrrb_dim(int argc, VALUE *argv, VALUE self) { VALUE a, b; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &a, &b); a = mpfrrb_object_to_mpfr(a); b = mpfrrb_object_to_mpfr(b); int r = mpfr_dim(mpfrrb_rb2ref(self), mpfrrb_rb2ref(a), mpfrrb_rb2ref(b), rnd); return INT2NUM(r); } |
#div(a, b, round: MPFR.default_rounding) ⇒ Integer
Set the value of self to a / b rounded in the direction round.
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 |
# File 'ext/mpfr_rb.c', line 1329 static VALUE mpfrrb_div(int argc, VALUE *argv, VALUE self) { VALUE a, b; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &a, &b); a = mpfrrb_object_to_mpfr(a); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (rb_obj_is_kind_of(a, c_MPFR)) { mpfr_ptr mpa = mpfrrb_rb2ref(a); if (RB_FLOAT_TYPE_P(b)) { r = mpfr_div_d(mpr, mpa, NUM2DBL(b), rnd); } else if (RB_FIXNUM_P(b)) { r = mpfr_div_si(mpr, mpa, NUM2LL(b), rnd); } else if (RB_INTEGER_TYPE_P(b)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(b, mpz); r = mpfr_div_z(mpr, mpa, mpz, rnd); mpz_clear(mpz); } else if (RB_TYPE_P(b, T_RATIONAL)) { mpq_t mpq; mpq_init(mpq); mpfrrb_rational_to_mpq(b, mpq); r = mpfr_div_q(mpr, mpa, mpq, rnd); mpq_clear(mpq); } else { b = mpfrrb_object_to_mpfr(b); r = mpfr_div(mpr, mpa, mpfrrb_rb2ref(b), rnd); } } else { b = mpfrrb_object_to_mpfr(b); mpfr_ptr mpb = mpfrrb_rb2ref(b); if (RB_FLOAT_TYPE_P(a)) { r = mpfr_d_div(mpr, NUM2DBL(a), mpb, rnd); } else if (RB_FIXNUM_P(a)) { r = mpfr_si_div(mpr, NUM2LL(a), mpb, rnd); } else { a = mpfrrb_object_to_mpfr(a); r = mpfr_div(mpr, mpfrrb_rb2ref(a), mpb, rnd); } } return INT2NUM(r); } |
#div!(b, round: MPFR.default_rounding) ⇒ Integer
Set the value of self to self / b rounded in the direction round.
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 |
# File 'ext/mpfr_rb.c', line 1381 static VALUE mpfrrb_div_B(int argc, VALUE *argv, VALUE self) { VALUE b; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &b); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(b)) { r = mpfr_div_d(mpr, mpr, NUM2DBL(b), rnd); } else if (RB_FIXNUM_P(b)) { r = mpfr_div_si(mpr, mpr, NUM2LL(b), rnd); } else if (RB_INTEGER_TYPE_P(b)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(b, mpz); r = mpfr_div_z(mpr, mpr, mpz, rnd); mpz_clear(mpz); } else if (RB_TYPE_P(b, T_RATIONAL)) { mpq_t mpq; mpq_init(mpq); mpfrrb_rational_to_mpq(b, mpq); r = mpfr_div_q(mpr, mpr, mpq, rnd); mpq_clear(mpq); } else { b = mpfrrb_object_to_mpfr(b); r = mpfr_div(mpr, mpr, mpfrrb_rb2ref(b), rnd); } return INT2NUM(r); } |
#div_2i(a, n, round: MPFR.default_rounding) ⇒ Integer
Set self to a divided by 2 raised to n, rounded int the direction round.
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 |
# File 'ext/mpfr_rb.c', line 1781 static VALUE mpfrrb_div_2i(int argc, VALUE *argv, VALUE self) { VALUE a, n; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &a, &n); long long i = NUM2LL(n); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(a)) { MPFR_DECL_INIT(mpa, 53); mpfr_set_d(mpa, NUM2DBL(a), MPFR_RNDN); r = mpfr_div_2si(mpr, mpa, i, rnd); } else if (RB_FIXNUM_P(a)) { MPFR_DECL_INIT(mpa, 64); mpfr_set_si(mpa, NUM2LL(a), MPFR_RNDN); r = mpfr_div_2si(mpr, mpa, i, rnd); } else { a = mpfrrb_object_to_mpfr(a); r = mpfr_div_2si(mpr, mpfrrb_rb2ref(a), i, rnd); } return INT2NUM(r); } |
#div_2i!(n, round: MPFR.default_rounding) ⇒ Integer
Set self to self divided by 2 raised to n, rounded int the direction round.
1810 1811 1812 1813 1814 1815 1816 1817 1818 |
# File 'ext/mpfr_rb.c', line 1810 static VALUE mpfrrb_div_2i_B(int argc, VALUE *argv, VALUE self) { VALUE n; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &n); long long i = NUM2LL(n); mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_div_2si(mp, mp, i, rnd); return INT2NUM(r); } |
#eint(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the exponential integral of v, rounded in the directionround.
This is the sum of Euler’s constant, of the logarithm of the absolute value of v, and of the sum for k from 1 to infinity of v to the power k, divided by k and the factorial of k.
For positive v, it corresponds to the Ei function at v (see formula 5.1.10 from the Handbook of Mathematical Functions from Abramowitz and Stegun),
and for negative v, to the opposite of the E1 function (sometimes called eint1) at -v (formula 5.1.1 from the same reference).
3111 3112 3113 3114 |
# File 'ext/mpfr_rb.c', line 3111 static VALUE mpfrrb_eint(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(eint); } |
#erandom(round: MPFR.default_rounding) ⇒ Integer
Generate a random floating-point number according to an exponential distribution, with mean one. Other characteristics are identical to #nrandom.
3979 3980 3981 3982 3983 3984 3985 |
# File 'ext/mpfr_rb.c', line 3979 static VALUE mpfrrb_erandom(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_erandom(mp, mpfrrb_gmp_randstate, rnd); return INT2NUM(r); } |
#erf(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the error function on 'v', rounded in the direction round.
3202 3203 3204 3205 |
# File 'ext/mpfr_rb.c', line 3202 static VALUE mpfrrb_erf(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(erf); } |
#erfc(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the complementary error function on 'v', rounded in the direction round.
3212 3213 3214 3215 |
# File 'ext/mpfr_rb.c', line 3212 static VALUE mpfrrb_erfc(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(erfc); } |
#exp(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the exponential of v, rounded in the direction round.
2496 2497 2498 2499 |
# File 'ext/mpfr_rb.c', line 2496 static VALUE mpfrrb_exp(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(exp); } |
#exp10(v, round: MPFR.default_rounding) ⇒ Integer
Set self to 10 power of v, rounded in the direction round.
2516 2517 2518 2519 |
# File 'ext/mpfr_rb.c', line 2516 static VALUE mpfrrb_exp10(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(exp10); } |
#exp10m1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to 10 power of v followed by a subtraction by one, rounded in the direction round.
2546 2547 2548 2549 |
# File 'ext/mpfr_rb.c', line 2546 static VALUE mpfrrb_exp10m1(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(exp10m1); } |
#exp2(v, round: MPFR.default_rounding) ⇒ Integer
Set self to 2 power of v, rounded in the direction round.
2506 2507 2508 2509 |
# File 'ext/mpfr_rb.c', line 2506 static VALUE mpfrrb_exp2(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(exp2); } |
#exp2m1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to 2 power of v followed by a subtraction by one, rounded in the direction round.
2536 2537 2538 2539 |
# File 'ext/mpfr_rb.c', line 2536 static VALUE mpfrrb_exp2m1(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(exp2m1); } |
#expm1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the exponential of v followed by a subtraction by one, rounded in the direction round.
2526 2527 2528 2529 |
# File 'ext/mpfr_rb.c', line 2526 static VALUE mpfrrb_expm1(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(expm1); } |
#exponent ⇒ Integer?
Return the exponent of self, assuming that self is a non-zero ordinary number and the significand is considered in [1, 2).
726 727 728 729 730 731 732 733 734 735 |
# File 'ext/mpfr_rb.c', line 726 static VALUE mpfrrb_get_exponent(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); if (mpfr_nan_p(mp) || mpfr_inf_p(mp)) { return Qnil; } else if (mpfr_zero_p(mp)) { return INT2NUM(0); } return LL2NUM(mpfr_get_exp(mp) - 1ll); } |
#exponent=(e) ⇒ Object
Set the exponent of self to e, assuming the significand in [1, 2).
self must be an ordinary number (not nan, infinity nor zero).
742 743 744 745 746 747 748 749 750 751 752 |
# File 'ext/mpfr_rb.c', line 742 static VALUE mpfrrb_set_exponent(VALUE self, VALUE e) { mpfr_exp_t p = NUM2LONG(e); mpfr_ptr mp = mpfrrb_rb2ref(self); if (!mpfr_regular_p(mp)) { rb_raise(rb_eRuntimeError, "trying to set the exponent of a non-regular MPFR object"); } p += 1; mpfr_set_exp(mp, p); return e; } |
#fac(n, round: MPFR.default_rounding) ⇒ Integer
Set self to the factorial of n, rounded int the direction round.
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 |
# File 'ext/mpfr_rb.c', line 1827 static VALUE mpfrrb_fac(int argc, VALUE *argv, VALUE self) { VALUE n; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &n); long long i = NUM2LL(n); mpfr_ptr mp = mpfrrb_rb2ref(self); if (i < 0) { rb_raise(rb_eRangeError, "factorial of negative value"); } int r = mpfr_fac_ui(mp, i, rnd); return INT2NUM(r); } |
#finite? ⇒ Boolean
Tels if self is neither an infinity nor NaN.
785 786 787 788 789 |
# File 'ext/mpfr_rb.c', line 785 static VALUE mpfrrb_is_finite(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); return mpfr_number_p(mp) ? Qtrue : Qfalse; } |
#floor(op) ⇒ Integer
Set self to op rounded to the next lower or equal representable integer.
3356 3357 3358 3359 |
# File 'ext/mpfr_rb.c', line 3356 static VALUE mpfrrb_floor(VALUE self, VALUE op) { MPFRRB_ONE_ARG_NO_RND_FUNC_BODY(floor); } |
#floor! ⇒ Integer
Set self to self rounded to the next lower or equal representable integer.
3414 3415 3416 3417 3418 |
# File 'ext/mpfr_rb.c', line 3414 static VALUE mpfrrb_floor_B(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); return INT2NUM(mpfr_floor(mp, mp)); } |
#fma(a, b, c, round: MPFR.default_rounding) ⇒ Integer
Set self to (a times b) plus c, rounded in the direction round.
Concerning special values (signed zeros, infinities, NaN),
these functions behave like a multiplication followed by a separate addition or subtraction.
That is, the fused operation matters only for rounding.
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 |
# File 'ext/mpfr_rb.c', line 1850 static VALUE mpfrrb_fma(int argc, VALUE *argv, VALUE self) { VALUE a, b, c; mpfr_rnd_t rnd = mpfrrb_get_a_b_c_round(argc, argv, &a, &b, &c); mpfr_ptr mpr = mpfrrb_rb2ref(self); mpfr_ptr mpa = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(a)); mpfr_ptr mpb = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(b)); mpfr_ptr mpc = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(c)); int r = mpfr_fma(mpr, mpa, mpb, mpc, rnd); return INT2NUM(r); } |
#fma!(a, b, round: MPFR.default_rounding) ⇒ Integer
Set self to (a times b) plus self, rounded in the direction round.
Concerning special values (signed zeros, infinities, NaN),
these functions behave like a multiplication followed by a separate addition or subtraction.
That is, the fused operation matters only for rounding.
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 |
# File 'ext/mpfr_rb.c', line 1872 static VALUE mpfrrb_fma_B(int argc, VALUE *argv, VALUE self) { VALUE a, b; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &a, &b); mpfr_ptr mpr = mpfrrb_rb2ref(self); mpfr_ptr mpa = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(a)); mpfr_ptr mpb = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(b)); int r = mpfr_fma(mpr, mpa, mpb, mpr, rnd); return INT2NUM(r); } |
#fmma(a, b, c, d, round: MPFR.default_rounding) ⇒ Integer
Set self to (a times b) plus (c times d), rounded in the direction round.
In case the computation of a times b overflows or underflows (or that of c times d),
the result is computed as if the two intermediate products were computed with rounding toward zero.
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 |
# File 'ext/mpfr_rb.c', line 1935 static VALUE mpfrrb_fmma(int argc, VALUE *argv, VALUE self) { VALUE v[4]; mpfr_rnd_t rnd = mpfrrb_get_4_args_and_round(argc, argv, v); mpfr_ptr mpr = mpfrrb_rb2ref(self); mpfr_ptr mpa = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(v[0])); mpfr_ptr mpb = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(v[1])); mpfr_ptr mpc = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(v[2])); mpfr_ptr mpd = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(v[3])); int r = mpfr_fmma(mpr, mpa, mpb, mpc, mpd, rnd); return INT2NUM(r); } |
#fmms(a, b, c, d, round: MPFR.default_rounding) ⇒ Integer
Set self to (a times b) minus (c times d), rounded in the direction round.
In case the computation of a times b overflows or underflows (or that of c times d),
the result is computed as if the two intermediate products were computed with rounding toward zero.
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 |
# File 'ext/mpfr_rb.c', line 1957 static VALUE mpfrrb_fmms(int argc, VALUE *argv, VALUE self) { VALUE v[4]; mpfr_rnd_t rnd = mpfrrb_get_4_args_and_round(argc, argv, v); mpfr_ptr mpr = mpfrrb_rb2ref(self); mpfr_ptr mpa = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(v[0])); mpfr_ptr mpb = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(v[1])); mpfr_ptr mpc = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(v[2])); mpfr_ptr mpd = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(v[3])); int r = mpfr_fmms(mpr, mpa, mpb, mpc, mpd, rnd); return INT2NUM(r); } |
#fmod(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self the the value of x - ny, rounded according to the direction round.
n is the integer quotient of x divided by y, rounded toward zero.
Special values are handled as described in Section F.9.7.1 of the ISO C99 standard:
- If
xis infinite oryis zero, self is NaN. - If
yis infinite andxis finite, self isxrounded to the precision of self. - If self is zero, it has the sign of
x. The return value is the ternary value corresponding to self.
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 |
# File 'ext/mpfr_rb.c', line 3570 static VALUE mpfrrb_fmod(int argc, VALUE *argv, VALUE self) { VALUE x, y; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &x, &y); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(x)) { MPFR_DECL_INIT(mpx, 53); mpfr_set_d(mpx, NUM2DBL(x), MPFR_RNDN); if (RB_FLOAT_TYPE_P(y)) { MPFR_DECL_INIT(mpy, 53); mpfr_set_d(mpy, NUM2DBL(y), MPFR_RNDN); r = mpfr_fmod(mpr, mpx, mpy, rnd); } else if (RB_FIXNUM_P(y)) { long long ly = NUM2LL(y); if (ly >= 0) { r = mpfr_fmod_ui(mpr, mpx, ly, rnd); } else { MPFR_DECL_INIT(mpy, 64); mpfr_set_si(mpy, NUM2LL(y), MPFR_RNDN); r = mpfr_fmod(mpr, mpx, mpy, rnd); } } else if (RB_TYPE_P(y, T_BIGNUM)) { mpz_t mpzy; mpz_init(mpzy); mpfrrb_bignum_to_mpz(y, mpzy); int nlz_bits_ret; size_t nb_bytes = rb_absint_size(y, &nlz_bits_ret); mpfr_prec_t p = nb_bytes*8 - nlz_bits_ret; mpfr_t mpy; mpfr_init2(mpy, p); mpfr_set_z(mpy, mpzy, MPFR_RNDN); mpz_clear(mpzy); r = mpfr_fmod(mpr, mpx, mpy, rnd); mpfr_clear(mpy); } else { mpfr_ptr mpy = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(y)); r = mpfr_fmod(mpr, mpx, mpy, rnd); } } else if (RB_FIXNUM_P(x)) { MPFR_DECL_INIT(mpx, 64); mpfr_set_si(mpx, NUM2LL(x), MPFR_RNDN); if (RB_FLOAT_TYPE_P(y)) { MPFR_DECL_INIT(mpy, 53); mpfr_set_d(mpy, NUM2DBL(y), MPFR_RNDN); r = mpfr_fmod(mpr, mpx, mpy, rnd); } else if (RB_FIXNUM_P(y)) { long long ly = NUM2LL(y); if (ly >= 0) { r = mpfr_fmod_ui(mpr, mpx, ly, rnd); } else { MPFR_DECL_INIT(mpy, 64); mpfr_set_si(mpy, NUM2LL(y), MPFR_RNDN); r = mpfr_fmod(mpr, mpx, mpy, rnd); } } else if (RB_TYPE_P(y, T_BIGNUM)) { mpz_t mpzy; mpz_init(mpzy); mpfrrb_bignum_to_mpz(y, mpzy); int nlz_bits_ret; size_t nb_bytes = rb_absint_size(y, &nlz_bits_ret); mpfr_prec_t p = nb_bytes*8 - nlz_bits_ret; mpfr_t mpy; mpfr_init2(mpy, p); mpfr_set_z(mpy, mpzy, MPFR_RNDN); mpz_clear(mpzy); r = mpfr_fmod(mpr, mpx, mpy, rnd); mpfr_clear(mpy); } else { mpfr_ptr mpy = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(y)); r = mpfr_fmod(mpr, mpx, mpy, rnd); } } else if (RB_TYPE_P(x, T_BIGNUM)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(x, mpz); int nlz_bits_ret; size_t nb_bytes = rb_absint_size(x, &nlz_bits_ret); mpfr_prec_t p = nb_bytes*8 - nlz_bits_ret; mpfr_t mpx; mpfr_init2(mpx, p); mpfr_set_z(mpx, mpz, MPFR_RNDN); mpz_clear(mpz); if (RB_FLOAT_TYPE_P(y)) { MPFR_DECL_INIT(mpy, 53); mpfr_set_d(mpy, NUM2DBL(y), MPFR_RNDN); r = mpfr_fmod(mpr, mpx, mpy, rnd); } else if (RB_FIXNUM_P(y)) { long long ly = NUM2LL(y); if (ly >= 0) { r = mpfr_fmod_ui(mpr, mpx, ly, rnd); } else { MPFR_DECL_INIT(mpy, 64); mpfr_set_si(mpy, NUM2LL(y), MPFR_RNDN); r = mpfr_fmod(mpr, mpx, mpy, rnd); } } else if (RB_TYPE_P(y, T_BIGNUM)) { mpz_t mpzy; mpz_init(mpzy); mpfrrb_bignum_to_mpz(y, mpzy); int nlz_bits_ret; size_t nb_bytes = rb_absint_size(y, &nlz_bits_ret); mpfr_prec_t p = nb_bytes*8 - nlz_bits_ret; mpfr_t mpy; mpfr_init2(mpy, p); mpfr_set_z(mpy, mpzy, MPFR_RNDN); mpz_clear(mpzy); r = mpfr_fmod(mpr, mpx, mpy, rnd); mpfr_clear(mpy); } else { mpfr_ptr mpy = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(y)); r = mpfr_fmod(mpr, mpx, mpy, rnd); } mpfr_clear(mpx); } else { mpfr_ptr mpx = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(x)); if (RB_FLOAT_TYPE_P(y)) { MPFR_DECL_INIT(mpy, 53); mpfr_set_d(mpy, NUM2DBL(y), MPFR_RNDN); r = mpfr_fmod(mpr, mpx, mpy, rnd); } else if (RB_FIXNUM_P(y)) { long long ly = NUM2LL(y); if (ly >= 0) { r = mpfr_fmod_ui(mpr, mpx, ly, rnd); } else { MPFR_DECL_INIT(mpy, 64); mpfr_set_si(mpy, NUM2LL(y), MPFR_RNDN); r = mpfr_fmod(mpr, mpx, mpy, rnd); } } else if (RB_TYPE_P(y, T_BIGNUM)) { mpz_t mpzy; mpz_init(mpzy); mpfrrb_bignum_to_mpz(y, mpzy); int nlz_bits_ret; size_t nb_bytes = rb_absint_size(y, &nlz_bits_ret); mpfr_prec_t p = nb_bytes*8 - nlz_bits_ret; mpfr_t mpy; mpfr_init2(mpy, p); mpfr_set_z(mpy, mpzy, MPFR_RNDN); mpz_clear(mpzy); r = mpfr_fmod(mpr, mpx, mpy, rnd); mpfr_clear(mpy); } else { mpfr_ptr mpy = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(y)); r = mpfr_fmod(mpr, mpx, mpy, rnd); } } return INT2NUM(r); } |
#fms(a, b, c, round: MPFR.default_rounding) ⇒ Integer
Set self to (a times b) minus c, rounded in the direction round.
Concerning special values (signed zeros, infinities, NaN),
these functions behave like a multiplication followed by a separate addition or subtraction.
That is, the fused operation matters only for rounding.
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 |
# File 'ext/mpfr_rb.c', line 1893 static VALUE mpfrrb_fms(int argc, VALUE *argv, VALUE self) { VALUE a, b, c; mpfr_rnd_t rnd = mpfrrb_get_a_b_c_round(argc, argv, &a, &b, &c); mpfr_ptr mpr = mpfrrb_rb2ref(self); mpfr_ptr mpa = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(a)); mpfr_ptr mpb = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(b)); mpfr_ptr mpc = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(c)); int r = mpfr_fms(mpr, mpa, mpb, mpc, rnd); return INT2NUM(r); } |
#fms!(a, b, round: MPFR.default_rounding) ⇒ Integer
Set self to (a times b) minus self, rounded in the direction round.
Concerning special values (signed zeros, infinities, NaN),
these functions behave like a multiplication followed by a separate addition or subtraction.
That is, the fused operation matters only for rounding.
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 |
# File 'ext/mpfr_rb.c', line 1915 static VALUE mpfrrb_fms_B(int argc, VALUE *argv, VALUE self) { VALUE a, b; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &a, &b); mpfr_ptr mpr = mpfrrb_rb2ref(self); mpfr_ptr mpa = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(a)); mpfr_ptr mpb = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(b)); int r = mpfr_fms(mpr, mpa, mpb, mpr, rnd); return INT2NUM(r); } |
#frac(op, round: MPFR.default_rounding) ⇒ Integer
Set self to the fractional part of op, having the same sign as op, rounded in the direction round.
Unlike in #rint, round affects only how the exact fractional part is rounded, not how the fractional part is generated.
When op is an integer or an infinity, set self to zero with the same sign as op.
3527 3528 3529 3530 |
# File 'ext/mpfr_rb.c', line 3527 static VALUE mpfrrb_frac(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(frac); } |
#gamma(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the Gamma function on v, , rounded in the directionround.
When v is a negative integer, self is set to NaN.
3133 3134 3135 3136 |
# File 'ext/mpfr_rb.c', line 3133 static VALUE mpfrrb_gamma(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(gamma); } |
#gamma_inc(x, y, round: MPFR.default_rounding) ⇒ Integer
The current implementation of gamma_inc is slow for large values of self or x, in which case some internal overflow might also occur.
Set self to the value of the incomplete Gamma function on x and y, rounded in the direction round.
(In the literature, gamma_inc is called upper incomplete Gamma function, or sometimes complementary incomplete Gamma function.)
When y is zero and x is a negative integer, self is set to NaN.
3147 3148 3149 3150 |
# File 'ext/mpfr_rb.c', line 3147 static VALUE mpfrrb_gamma_inc(int argc, VALUE *argv, VALUE self) { MPFRRB_TWO_ARG_FUNC_BODY(gamma_inc); } |
#get_d_2exp(round: MPFR.default_rounding) ⇒ Array<Float, Integer>
Return [d, e] such that 1 ≤ abs(d) < 2 and d times 2 raised to e equals self rounded to double precision,
using the given rounding mode.
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 |
# File 'ext/mpfr_rb.c', line 1002 static VALUE mpfrrb_get_d_2exp(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); long e = 0; double d = mpfr_get_d_2exp(&e, mpfrrb_rb2ref(self), rnd); d *= 2.0; e -= 1; VALUE rbd = DBL2NUM(d); VALUE rbe = isfinite(d) ? LONG2NUM(e) : Qnil; return rb_ary_new_from_args(2, rbd, rbe); } |
#get_i_2exp ⇒ Array<Integer, Integer>
Return [i, e] such that self exactly equals i times 2 raised to the power e.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
# File 'ext/mpfr_rb.c', line 1018 static VALUE mpfrrb_get_i_2exp(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); if (mpfr_nan_p(mp)) { rb_raise(rb_eFloatDomainError, "NaN"); } else if (mpfr_inf_p(mp)) { rb_raise(rb_eFloatDomainError, "Infinity"); } else if (mpfr_zero_p(mp)) { return rb_ary_new_from_args(2, INT2NUM(0), INT2NUM(0)); } mpz_t mpz; mpz_init(mpz); mpfr_exp_t e = mpfr_get_z_2exp(mpz, mpfrrb_rb2ref(self)); VALUE rbi = mpfrrb_mpz_to_bignum(mpz); mpz_clear(mpz); return rb_ary_new_from_args(2, rbi, LL2NUM(e)); } |
#hypot(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self to the Euclidean norm of x and y, i.e. the square root to the sum of the squares of x and y, rounded in the direction round.
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 |
# File 'ext/mpfr_rb.c', line 1977 static VALUE mpfrrb_hypot(int argc, VALUE *argv, VALUE self) { VALUE a, b; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &a, &b); mpfr_ptr mpr = mpfrrb_rb2ref(self); mpfr_ptr mpa = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(a)); mpfr_ptr mpb = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(b)); int r = mpfr_hypot(mpr, mpa, mpb, rnd); return INT2NUM(r); } |
#infinite? ⇒ Boolean
Tels if self is an infinity.
776 777 778 779 |
# File 'ext/mpfr_rb.c', line 776 static VALUE mpfrrb_is_infinite(VALUE self) { return mpfr_inf_p(mpfrrb_rb2ref(self)) ? Qtrue : Qfalse; } |
#integer? ⇒ Boolean
Tels if the fractional part of self is null.
795 796 797 798 799 |
# File 'ext/mpfr_rb.c', line 795 static VALUE mpfrrb_is_integer(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); return mpfr_integer_p(mp) ? Qtrue : Qfalse; } |
#j0(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the first kind Bessel function of order 0, on v, rounded in the direction round.
When v is NaN, self is always set to NaN.
When v is positive or negative infinity, self is set to +0.
When v is zero, and n is not zero, self is set to +0 or -0 depending on the parity and sign of n, and the sign of v.
3225 3226 3227 3228 |
# File 'ext/mpfr_rb.c', line 3225 static VALUE mpfrrb_j0(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(j0); } |
#j1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the first kind Bessel function of order 1, on v, rounded in the direction round.
When v is NaN, self is always set to NaN.
When v is positive or negative infinity, self is set to +0.
When v is zero, and n is not zero, self is set to +0 or -0 depending on the parity and sign of n, and the sign of v.
3238 3239 3240 3241 |
# File 'ext/mpfr_rb.c', line 3238 static VALUE mpfrrb_j1(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(j1); } |
#jn(n, v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the first kind Bessel function of order n, on v, rounded in the direction round.
When v is NaN, self is always set to NaN.
When v is positive or negative infinity, self is set to +0.
When v is zero, and n is not zero, self is set to +0 or -0 depending on the parity and sign of n, and the sign of v.
3253 3254 3255 3256 |
# File 'ext/mpfr_rb.c', line 3253 static VALUE mpfrrb_jn(int argc, VALUE *argv, VALUE self) { MPFRRB_INT_MP_RND_FUNC_BODY(jn); } |
#li2(v, round: MPFR.default_rounding) ⇒ Integer
Set self to real part of the dilogarithm of v, rounded in the directionround.
MPFR defines the dilogarithm function as the integral of −log(1−t)/t from 0 to v.
3122 3123 3124 3125 |
# File 'ext/mpfr_rb.c', line 3122 static VALUE mpfrrb_li2(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(li2); } |
#lngamma(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the logarithm of the Gamma function on v, rounded in the directionround.
When v is 1 or 2, set self to +0 (in all rounding modes).
When v is an infinity or a non-positive integer, set self to +Inf, following the general rules on special values.
When −2k − 1 < v < −2k, k being a non-negative integer, set self to NaN.
3160 3161 3162 3163 |
# File 'ext/mpfr_rb.c', line 3160 static VALUE mpfrrb_lngamma(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(lngamma); } |
#log(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the natural logarithm of v, rounded in the direction round.
Set self to +0 if v is 1 (in all rounding modes), for consistency with the ISO C99 and IEEE 754 standards.
Set self to -Inf if v is ±0 (i.e., the sign of the zero has no influence on the result).
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 |
# File 'ext/mpfr_rb.c', line 2050 static VALUE mpfrrb_log(int argc, VALUE *argv, VALUE self) { VALUE a; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &a); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(a)) { MPFR_DECL_INIT(mpa, 53); mpfr_set_d(mpa, NUM2DBL(a), MPFR_RNDN); r = mpfr_log(mpr, mpa, rnd); } else if (RB_FIXNUM_P(a)) { long int i = NUM2LL(a); if (i < 0) { mpfr_set_nan(mpr); r = 0; } else { r = mpfr_log_ui(mpr, i, rnd); } } else if (RB_TYPE_P(a, T_BIGNUM)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(a, mpz); int nlz_bits_ret; size_t nb_bytes = rb_absint_size(a, &nlz_bits_ret); mpfr_prec_t p = nb_bytes*8 - nlz_bits_ret; mpfr_t mpa; mpfr_init2(mpa, p); mpfr_set_z(mpa, mpz, MPFR_RNDN); mpz_clear(mpz); r = mpfr_log(mpr, mpa, rnd); mpfr_clear(mpa); } else { mpfr_ptr mpa = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(a)); r = mpfr_log(mpr, mpa, rnd); } return INT2NUM(r); } |
#log10(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the base ten logarithm of v, rounded in the direction round.
Set self to +0 if v is 1 (in all rounding modes), for consistency with the ISO C99 and IEEE 754 standards.
Set self to -Inf if v is ±0 (i.e., the sign of the zero has no influence on the result).
2453 2454 2455 2456 |
# File 'ext/mpfr_rb.c', line 2453 static VALUE mpfrrb_log10(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(log10); } |
#log10p1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the logarithm of one plus v in radix ten, rounded in the direction round.
Set self to -Inf if v is -1.
2486 2487 2488 2489 |
# File 'ext/mpfr_rb.c', line 2486 static VALUE mpfrrb_log10p1(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(log10p1); } |
#logp1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the logarithm of one plus v, rounded in the direction round.
Set self to -Inf if v is -1.
2464 2465 2466 2467 |
# File 'ext/mpfr_rb.c', line 2464 static VALUE mpfrrb_log1p(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(log1p); } |
#log2(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the base 2 logarithm of v, rounded in the direction round.
Set self to +0 if v is 1 (in all rounding modes), for consistency with the ISO C99 and IEEE 754 standards.
Set self to -Inf if v is ±0 (i.e., the sign of the zero has no influence on the result).
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 |
# File 'ext/mpfr_rb.c', line 2096 static VALUE mpfrrb_log2(int argc, VALUE *argv, VALUE self) { VALUE a; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &a); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(a)) { MPFR_DECL_INIT(mpa, 53); mpfr_set_d(mpa, NUM2DBL(a), MPFR_RNDN); r = mpfr_log2(mpr, mpa, rnd); } else if (RB_FIXNUM_P(a)) { MPFR_DECL_INIT(mpa, 64); mpfr_set_si(mpa, NUM2LL(a), MPFR_RNDN); r = mpfr_log2(mpr, mpa, rnd); } else if (RB_TYPE_P(a, T_BIGNUM)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(a, mpz); int nlz_bits_ret; size_t nb_bytes = rb_absint_size(a, &nlz_bits_ret); mpfr_prec_t p = nb_bytes*8 - nlz_bits_ret; mpfr_t mpa; mpfr_init2(mpa, p); mpfr_set_z(mpa, mpz, MPFR_RNDN); mpz_clear(mpz); r = mpfr_log2(mpr, mpa, rnd); mpfr_clear(mpa); } else { mpfr_ptr mpa = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(a)); r = mpfr_log2(mpr, mpa, rnd); } return INT2NUM(r); } |
#log2p1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the logarithm of one plus v in radix two, rounded in the direction round.
Set self to -Inf if v is -1.
2475 2476 2477 2478 |
# File 'ext/mpfr_rb.c', line 2475 static VALUE mpfrrb_log2p1(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(log2p1); } |
#max(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self to the maximum of x and y.
If x and y are both NaN, then self is set to NaN.
If x or y is NaN, then self is set to the numeric value.
If x and y are zeros of different signs, then rop is set to +0.
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 |
# File 'ext/mpfr_rb.c', line 3910 static VALUE mpfrrb_max(int argc, VALUE *argv, VALUE self) { VALUE x, y; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &x, &y); x = mpfrrb_object_to_mpfr(x); y = mpfrrb_object_to_mpfr(y); mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_max(mp, mpfrrb_rb2ref(x), mpfrrb_rb2ref(y), rnd); return INT2NUM(r); } |
#min(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self to the minimum of x and y.
If x and y are both NaN, then self is set to NaN.
If x or y is NaN, then self is set to the numeric value.
If x and y are zeros of different signs, then rop is set to -0.
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 |
# File 'ext/mpfr_rb.c', line 3891 static VALUE mpfrrb_min(int argc, VALUE *argv, VALUE self) { VALUE x, y; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &x, &y); x = mpfrrb_object_to_mpfr(x); y = mpfrrb_object_to_mpfr(y); mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_min(mp, mpfrrb_rb2ref(x), mpfrrb_rb2ref(y), rnd); return INT2NUM(r); } |
#mul(a, b, round: MPFR.default_rounding) ⇒ Integer
Set the value of self to a times b rounded in the direction round.
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 |
# File 'ext/mpfr_rb.c', line 1256 static VALUE mpfrrb_mul(int argc, VALUE *argv, VALUE self) { VALUE a, b; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &a, &b); a = mpfrrb_object_to_mpfr(a); mpfr_ptr mpr = mpfrrb_rb2ref(self); mpfr_ptr mpa = mpfrrb_rb2ref(a); int r; if (RB_FLOAT_TYPE_P(b)) { r = mpfr_mul_d(mpr, mpa, NUM2DBL(b), rnd); } else if (RB_FIXNUM_P(b)) { r = mpfr_mul_si(mpr, mpa, NUM2LL(b), rnd); } else if (RB_INTEGER_TYPE_P(b)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(b, mpz); r = mpfr_mul_z(mpr, mpa, mpz, rnd); mpz_clear(mpz); } else if (RB_TYPE_P(b, T_RATIONAL)) { mpq_t mpq; mpq_init(mpq); mpfrrb_rational_to_mpq(b, mpq); r = mpfr_mul_q(mpr, mpa, mpq, rnd); mpq_clear(mpq); } else { b = mpfrrb_object_to_mpfr(b); r = mpfr_mul(mpr, mpa, mpfrrb_rb2ref(b), rnd); } return INT2NUM(r); } |
#mul!(b, round: MPFR.default_rounding) ⇒ Integer
Set the value of self to self times b rounded in the direction round.
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 |
# File 'ext/mpfr_rb.c', line 1293 static VALUE mpfrrb_mul_B(int argc, VALUE *argv, VALUE self) { VALUE b; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &b); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(b)) { r = mpfr_mul_d(mpr, mpr, NUM2DBL(b), rnd); } else if (RB_FIXNUM_P(b)) { r = mpfr_mul_si(mpr, mpr, NUM2LL(b), rnd); } else if (RB_INTEGER_TYPE_P(b)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(b, mpz); r = mpfr_mul_z(mpr, mpr, mpz, rnd); mpz_clear(mpz); } else if (RB_TYPE_P(b, T_RATIONAL)) { mpq_t mpq; mpq_init(mpq); mpfrrb_rational_to_mpq(b, mpq); r = mpfr_mul_q(mpr, mpr, mpq, rnd); mpq_clear(mpq); } else { b = mpfrrb_object_to_mpfr(b); r = mpfr_mul(mpr, mpr, mpfrrb_rb2ref(b), rnd); } return INT2NUM(r); } |
#mul_2i(a, n, round: MPFR.default_rounding) ⇒ Integer
Set self to a times 2 raised to n, rounded int the direction round.
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 |
# File 'ext/mpfr_rb.c', line 1734 static VALUE mpfrrb_mul_2i(int argc, VALUE *argv, VALUE self) { VALUE a, n; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &a, &n); long long i = NUM2LL(n); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(a)) { MPFR_DECL_INIT(mpa, 53); mpfr_set_d(mpa, NUM2DBL(a), MPFR_RNDN); r = mpfr_mul_2si(mpr, mpa, i, rnd); } else if (RB_FIXNUM_P(a)) { MPFR_DECL_INIT(mpa, 64); mpfr_set_si(mpa, NUM2LL(a), MPFR_RNDN); r = mpfr_mul_2si(mpr, mpa, i, rnd); } else { a = mpfrrb_object_to_mpfr(a); r = mpfr_mul_2si(mpr, mpfrrb_rb2ref(a), i, rnd); } return INT2NUM(r); } |
#mul_2i!(n, round: MPFR.default_rounding) ⇒ Integer
Set self to self times 2 raised to n, rounded int the direction round.
1763 1764 1765 1766 1767 1768 1769 1770 1771 |
# File 'ext/mpfr_rb.c', line 1763 static VALUE mpfrrb_mul_2i_B(int argc, VALUE *argv, VALUE self) { VALUE n; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &n); long long i = NUM2LL(n); mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_mul_2si(mp, mp, i, rnd); return INT2NUM(r); } |
#nan? ⇒ Boolean
Tels if self does not represent a number.
767 768 769 770 |
# File 'ext/mpfr_rb.c', line 767 static VALUE mpfrrb_is_nan(VALUE self) { return mpfr_nan_p(mpfrrb_rb2ref(self)) ? Qtrue : Qfalse; } |
#neg(a, round: MPFR.default_rounding) ⇒ Integer
Set self to -a, rounded int the direction round.
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 |
# File 'ext/mpfr_rb.c', line 1636 static VALUE mpfrrb_neg(int argc, VALUE *argv, VALUE self) { VALUE a; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &a); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(a)) { MPFR_DECL_INIT(mpa, 53); mpfr_set_d(mpa, NUM2DBL(a), MPFR_RNDN); r = mpfr_neg(mpr, mpa, rnd); } else if (RB_FIXNUM_P(a)) { MPFR_DECL_INIT(mpa, 64); mpfr_set_si(mpa, NUM2LL(a), MPFR_RNDN); r = mpfr_neg(mpr, mpa, rnd); } else { a = mpfrrb_object_to_mpfr(a); r = mpfr_neg(mpr, mpfrrb_rb2ref(a), rnd); } return INT2NUM(r); } |
#neg! ⇒ Integer
Set self -self.
1661 1662 1663 1664 1665 1666 |
# File 'ext/mpfr_rb.c', line 1661 static VALUE mpfrrb_neg_B(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_neg(mp, mp, MPFR_RNDN); return INT2NUM(r); } |
#nextabove! ⇒ self
Set self to the next (toward +Infinity) representable value.
3708 3709 3710 3711 3712 |
# File 'ext/mpfr_rb.c', line 3708 static VALUE mpfrrb_nextabove_B(VALUE self) { mpfr_nextabove(mpfrrb_rb2ref(self)); return self; } |
#nextbelow! ⇒ self
Set self to the previous (toward -Infinity) representable value.
3718 3719 3720 3721 3722 |
# File 'ext/mpfr_rb.c', line 3718 static VALUE mpfrrb_nextbelow_B(VALUE self) { mpfr_nextbelow(mpfrrb_rb2ref(self)); return self; } |
#nrandom(round: MPFR.default_rounding) ⇒ Integer
Generate a random floating-point number according to a standard normal Gaussian distribution (with mean zero and variance one).
The floating-point number self can be seen as if a random real number were generated according to the standard normal Gaussian distribution and then rounded in the direction rnd.
3965 3966 3967 3968 3969 3970 3971 |
# File 'ext/mpfr_rb.c', line 3965 static VALUE mpfrrb_nrandom(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_nrandom(mp, mpfrrb_gmp_randstate, rnd); return INT2NUM(r); } |
#pow(x, y, round: MPFR.default_rounding) ⇒ Integer
When 0 is of integer type, it is regarded as +0 by these functions. We do not use the usual limit rules in this case, as these rules are not used for pow.
Set self to x raised to y, rounded in the direction round.
Special values are handled as described in the ISO C99 and IEEE 754 standards for the pow function:
- pow(±0, y) returns ±Inf for y a negative odd integer.
- pow(±0, y) returns +Inf for y negative and not an odd integer.
- pow(±0, y) returns ±0 for y a positive odd integer.
- pow(±0, y) returns +0 for y positive and not an odd integer.
- pow(-1, ±Inf) returns 1.
- pow(+1, y) returns 1 for any y, even a NaN.
- pow(x, ±0) returns 1 for any x, even a NaN.
- pow(x, y) returns NaN for finite negative x and finite non-integer y.
- pow(x, -Inf) returns +Inf for 0 < abs(x) < 1, and +0 for abs(x) > 1.
- pow(x, +Inf) returns +0 for 0 < abs(x) < 1, and +Inf for abs(x) > 1.
- pow(-Inf, y) returns -0 for y a negative odd integer.
- pow(-Inf, y) returns +0 for y negative and not an odd integer.
- pow(-Inf, y) returns -Inf for y a positive odd integer.
- pow(-Inf, y) returns +Inf for y positive and not an odd integer.
- pow(+Inf, y) returns +0 for y negative, and +Inf for y positive.
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 |
# File 'ext/mpfr_rb.c', line 2576 static VALUE mpfrrb_pow(int argc, VALUE *argv, VALUE self) { VALUE x, y; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &x, &y); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(x)) { MPFR_DECL_INIT(mpx, 53); mpfr_set_d(mpx, NUM2DBL(x), MPFR_RNDN); if (RB_FLOAT_TYPE_P(y)) { MPFR_DECL_INIT(mpy, 53); mpfr_set_d(mpy, NUM2DBL(y), MPFR_RNDN); r = mpfr_pow(mpr, mpx, mpy, rnd); } else if (RB_FIXNUM_P(y)) { long long n = NUM2LL(y); r = mpfr_pow_si(mpr, mpx, n, rnd); } else if (RB_TYPE_P(y, T_BIGNUM)) { mpz_t mpzy; mpz_init(mpzy); mpfrrb_bignum_to_mpz(y, mpzy); r = mpfr_pow_z(mpr, mpx, mpzy, rnd); mpz_clear(mpzy); } else { mpfr_ptr mpy = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(y)); r = mpfr_pow(mpr, mpx, mpy, rnd); } } else if (RB_FIXNUM_P(x)) { long long xn = NUM2LL(x); if (xn >= 0) { if (RB_FLOAT_TYPE_P(y)) { MPFR_DECL_INIT(mpy, 53); mpfr_set_d(mpy, NUM2DBL(y), MPFR_RNDN); r = mpfr_ui_pow(mpr, xn, mpy, rnd); } else if (RB_FIXNUM_P(y)) { long long yn = NUM2LL(y); if (yn >= 0) { r = mpfr_ui_pow_ui(mpr, xn, yn, rnd); } else { MPFR_DECL_INIT(mpx, 64); mpfr_set_si(mpx, NUM2LL(x), MPFR_RNDN); r = mpfr_pow_si(mpr, mpx, yn, rnd); } } else if (RB_TYPE_P(y, T_BIGNUM)) { MPFR_DECL_INIT(mpx, 64); mpfr_set_si(mpx, NUM2LL(x), MPFR_RNDN); mpz_t mpzy; mpz_init(mpzy); mpfrrb_bignum_to_mpz(y, mpzy); r = mpfr_pow_z(mpr, mpx, mpzy, rnd); mpz_clear(mpzy); } else { mpfr_ptr mpy = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(y)); r = mpfr_ui_pow(mpr, xn, mpy, rnd); } } else { MPFR_DECL_INIT(mpx, 64); mpfr_set_si(mpx, NUM2LL(x), MPFR_RNDN); if (RB_FLOAT_TYPE_P(y)) { MPFR_DECL_INIT(mpy, 53); mpfr_set_d(mpy, NUM2DBL(y), MPFR_RNDN); r = mpfr_pow(mpr, mpx, mpy, rnd); } else if (RB_FIXNUM_P(y)) { long long n = NUM2LL(y); r = mpfr_pow_si(mpr, mpx, n, rnd); } else if (RB_TYPE_P(y, T_BIGNUM)) { mpz_t mpzy; mpz_init(mpzy); mpfrrb_bignum_to_mpz(y, mpzy); r = mpfr_pow_z(mpr, mpx, mpzy, rnd); mpz_clear(mpzy); } else { mpfr_ptr mpy = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(y)); r = mpfr_pow(mpr, mpx, mpy, rnd); } } } else if (RB_TYPE_P(x, T_BIGNUM)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(x, mpz); int nlz_bits_ret; size_t nb_bytes = rb_absint_size(x, &nlz_bits_ret); mpfr_prec_t p = nb_bytes*8 - nlz_bits_ret; mpfr_t mpx; mpfr_init2(mpx, p); mpfr_set_z(mpx, mpz, MPFR_RNDN); mpz_clear(mpz); if (RB_FLOAT_TYPE_P(y)) { MPFR_DECL_INIT(mpy, 53); mpfr_set_d(mpy, NUM2DBL(y), MPFR_RNDN); r = mpfr_pow(mpr, mpx, mpy, rnd); } else if (RB_FIXNUM_P(y)) { long long n = NUM2LL(y); r = mpfr_pow_si(mpr, mpx, n, rnd); } else if (RB_TYPE_P(y, T_BIGNUM)) { mpz_t mpzy; mpz_init(mpzy); mpfrrb_bignum_to_mpz(y, mpzy); r = mpfr_pow_z(mpr, mpx, mpzy, rnd); mpz_clear(mpzy); } else { mpfr_ptr mpy = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(y)); r = mpfr_pow(mpr, mpx, mpy, rnd); } mpfr_clear(mpx); } else { mpfr_ptr mpx = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(x)); if (RB_FLOAT_TYPE_P(y)) { MPFR_DECL_INIT(mpy, 53); mpfr_set_d(mpy, NUM2DBL(y), MPFR_RNDN); r = mpfr_pow(mpr, mpx, mpy, rnd); } else if (RB_FIXNUM_P(y)) { long long n = NUM2LL(y); r = mpfr_pow_si(mpr, mpx, n, rnd); } else if (RB_TYPE_P(y, T_BIGNUM)) { mpz_t mpzy; mpz_init(mpzy); mpfrrb_bignum_to_mpz(y, mpzy); r = mpfr_pow_z(mpr, mpx, mpzy, rnd); mpz_clear(mpzy); } else { mpfr_ptr mpy = mpfrrb_rb2ref(mpfrrb_object_to_mpfr(y)); r = mpfr_pow(mpr, mpx, mpy, rnd); } } return INT2NUM(r); } |
#prec ⇒ Integer
Return the precision of self, i.e., the number of bits used to store its significand.
536 537 538 539 |
# File 'ext/mpfr_rb.c', line 536 static VALUE mpfrrb_get_prec(VALUE self) { return LL2NUM(mpfr_get_prec(mpfrrb_rb2ref(self))); } |
#prec=(precrb) ⇒ Object
Set the precision of self to be exactly prec bits, and set its value to NaN.
The previous value stored in self is lost.
In case you want to keep the previous value stored in self, use #prec_round instead.
547 548 549 550 551 552 553 554 555 |
# File 'ext/mpfr_rb.c', line 547 static VALUE mpfrrb_set_prec(VALUE self, VALUE precrb) { mpfr_prec_t prec = NUM2LL(precrb); if (prec < MPFR_PREC_MIN || prec > MPFR_PREC_MAX) { rb_raise(rb_eRangeError, "precision must be between %d and %ld, %ld is invalid", MPFR_PREC_MIN, MPFR_PREC_MAX, prec); } mpfr_set_prec(mpfrrb_rb2ref(self), prec); return precrb; } |
#prec_round(prec, round: MPFR.default_rounding) ⇒ Integer
Round self according to round with precision prec.
If prec is greater than or equal to the precision of self, then new space is allocated for the significand, and it is filled with zeros.
Otherwise, the significand is rounded to precision prec with the given direction; no memory reallocation to free the unused limbs is done.
In both cases, the precision of self is changed to prec.
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 |
# File 'ext/mpfr_rb.c', line 929 static VALUE mpfrrb_prec_round(int argc, VALUE *argv, VALUE self) { VALUE precrb; VALUE kw; const ID kwkeys[1] = {id_round}; VALUE kwvalues[1] = {Qundef}; rb_scan_args(argc, argv, "1:", &precrb, &kw); mpfr_rnd_t rnd = mpfrrb_default_rounding; mpfr_prec_t prec = NUM2LL(precrb); if (prec < MPFR_PREC_MIN || prec > MPFR_PREC_MAX) { rb_raise(rb_eRangeError, "precision must be between %d and %ld, %ld is invalid", MPFR_PREC_MIN, MPFR_PREC_MAX, prec); } if (!NIL_P(kw)) { rb_get_kwargs(kw, kwkeys, 0, 1, kwvalues); if (kwvalues[0] != Qundef) { rnd = mpfrrb_sym2rnd(kwvalues[0]); } } mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_prec_round(mp, prec, rnd); return INT2NUM(r); } |
#rec_sqrt(a, round: MPFR.default_rounding) ⇒ Integer
Set self to the reciprocal square root of a, rounded int the direction round.
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 |
# File 'ext/mpfr_rb.c', line 1505 static VALUE mpfrrb_rec_sqrt(int argc, VALUE *argv, VALUE self) { VALUE a; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &a); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(a)) { MPFR_DECL_INIT(mpa, 53); mpfr_set_d(mpa, NUM2DBL(a), MPFR_RNDN); r = mpfr_rec_sqrt(mpr, mpa, rnd); } else if (RB_FIXNUM_P(a)) { MPFR_DECL_INIT(mpa, 64); mpfr_set_si(mpa, NUM2LL(a), MPFR_RNDN); r = mpfr_rec_sqrt(mpr, mpa, rnd); } else { a = mpfrrb_object_to_mpfr(a); r = mpfr_rec_sqrt(mpr, mpfrrb_rb2ref(a), rnd); } return INT2NUM(r); } |
#rec_sqrt!(round: MPFR.default_rounding) ⇒ Integer
Set self to the reciprocal square root of self, rounded int the direction round.
1532 1533 1534 1535 1536 1537 1538 |
# File 'ext/mpfr_rb.c', line 1532 static VALUE mpfrrb_rec_sqrt_B(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_rec_sqrt(mp, mp, rnd); return INT2NUM(r); } |
#remainder(x, y, round: MPFR.default_rounding) ⇒ Integer
Set self the the value of x - ny, rounded according to the direction round.
n is the integer quotient of x divided by y, rounded to the nearest integer (ties rounded to even).
Special values are handled as described in Section F.9.7.1 of the ISO C99 standard:
- If
xis infinite oryis zero, self is NaN. - If
yis infinite andxis finite, self isxrounded to the precision of self. - If self is zero, it has the sign of
x. The return value is the ternary value corresponding to self.
3699 3700 3701 3702 |
# File 'ext/mpfr_rb.c', line 3699 static VALUE mpfrrb_remainder(int argc, VALUE *argv, VALUE self) { MPFRRB_TWO_ARG_FUNC_BODY(remainder); } |
#rint(op, round: MPFR.default_rounding) ⇒ Integer
Set self to op rounded to the nearest representable integer in the direction round.
3338 3339 3340 3341 |
# File 'ext/mpfr_rb.c', line 3338 static VALUE mpfrrb_rint(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(rint); } |
#rint!(round: MPFR.default_rounding) ⇒ Integer
Set self to self rounded to the nearest representable integer in the direction round.
3393 3394 3395 3396 3397 3398 |
# File 'ext/mpfr_rb.c', line 3393 static VALUE mpfrrb_rint_B(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); mpfr_ptr mp = mpfrrb_rb2ref(self); return INT2NUM(mpfr_rint(mp, mp, rnd)); } |
#rint_ceil(op, round: MPFR.default_rounding) ⇒ Ingeger
Set self to op rounded to the next higher or equal integer.
If the result is not representable, it is rounded in the direction round.
This method do perform a double rounding:
first op is rounded to the nearest integer in the direction given by the method name,
then this nearest integer (if not representable) is rounded in the given direction round.
3459 3460 3461 3462 |
# File 'ext/mpfr_rb.c', line 3459 static VALUE mpfrrb_rint_ceil(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(rint_ceil); } |
#rint_floor(op, round: MPFR.default_rounding) ⇒ Ingeger
Set self to op rounded to the next lower or equal integer.
If the result is not representable, it is rounded in the direction round.
This method do perform a double rounding:
first op is rounded to the nearest integer in the direction given by the method name,
then this nearest integer (if not representable) is rounded in the given direction round.
3473 3474 3475 3476 |
# File 'ext/mpfr_rb.c', line 3473 static VALUE mpfrrb_rint_floor(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(rint_floor); } |
#rint_round(op, round: MPFR.default_rounding) ⇒ Ingeger
Set self to op rounded to the nearest integer, rounding halfway cases away from zero.
If the result is not representable, it is rounded in the direction round.
This method do perform a double rounding:
first op is rounded to the nearest integer in the direction given by the method name,
then this nearest integer (if not representable) is rounded in the given direction round.
3487 3488 3489 3490 |
# File 'ext/mpfr_rb.c', line 3487 static VALUE mpfrrb_rint_round(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(rint_round); } |
#rint_roundeven(op, round: MPFR.default_rounding) ⇒ Ingeger
Set self to op rounded to the nearest integer, rounding halfway cases to the nearest even integer.
If the result is not representable, it is rounded in the direction round.
This method do perform a double rounding:
first op is rounded to the nearest integer in the direction given by the method name,
then this nearest integer (if not representable) is rounded in the given direction round.
3501 3502 3503 3504 |
# File 'ext/mpfr_rb.c', line 3501 static VALUE mpfrrb_rint_roundeven(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(rint_roundeven); } |
#rint_trunc(op, round: MPFR.default_rounding) ⇒ Ingeger
Set self to op rounded to the next integer toward zero.
If the result is not representable, it is rounded in the direction round.
This method do perform a double rounding:
first op is rounded to the nearest integer in the direction given by the method name,
then this nearest integer (if not representable) is rounded in the given direction round.
3515 3516 3517 3518 |
# File 'ext/mpfr_rb.c', line 3515 static VALUE mpfrrb_rint_trunc(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(rint_trunc); } |
#rootn(a, n, round: MPFR.default_rounding) ⇒ Integer
Set self to the nth root of a, rounded int the direction round.
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 |
# File 'ext/mpfr_rb.c', line 1590 static VALUE mpfrrb_rootn(int argc, VALUE *argv, VALUE self) { VALUE a, n; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &a, &n); long long i = NUM2LL(n); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(a)) { MPFR_DECL_INIT(mpa, 53); mpfr_set_d(mpa, NUM2DBL(a), MPFR_RNDN); r = mpfr_rootn_si(mpr, mpa, i, rnd); } else if (RB_FIXNUM_P(a)) { MPFR_DECL_INIT(mpa, 64); mpfr_set_si(mpa, NUM2LL(a), MPFR_RNDN); r = mpfr_rootn_si(mpr, mpa, i, rnd); } else { a = mpfrrb_object_to_mpfr(a); r = mpfr_rootn_si(mpr, mpfrrb_rb2ref(a), i, rnd); } return INT2NUM(r); } |
#rootn!(n, round: MPFR.default_rounding) ⇒ Integer
Set self to the nth root of self, rounded int the direction round.
1619 1620 1621 1622 1623 1624 1625 1626 1627 |
# File 'ext/mpfr_rb.c', line 1619 static VALUE mpfrrb_rootn_B(int argc, VALUE *argv, VALUE self) { VALUE n; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &n); long long i = NUM2LL(n); mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_rootn_si(mp, mp, i, rnd); return INT2NUM(r); } |
#round(op) ⇒ Integer
Set self to op rounded to the nearest representable integer, rounding halfway cases away from zero.
3365 3366 3367 3368 |
# File 'ext/mpfr_rb.c', line 3365 static VALUE mpfrrb_round(VALUE self, VALUE op) { MPFRRB_ONE_ARG_NO_RND_FUNC_BODY(round); } |
#round! ⇒ Integer
Set self to self rounded to the nearest representable integer, rounding halfway cases away from zero.
3424 3425 3426 3427 3428 |
# File 'ext/mpfr_rb.c', line 3424 static VALUE mpfrrb_round_B(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); return INT2NUM(mpfr_round(mp, mp)); } |
#roundeven(op) ⇒ Integer
Set self to op rounded to the nearest representable integer, rounding halfway cases with the even-rounding rule.
3374 3375 3376 3377 |
# File 'ext/mpfr_rb.c', line 3374 static VALUE mpfrrb_roundeven(VALUE self, VALUE op) { MPFRRB_ONE_ARG_NO_RND_FUNC_BODY(roundeven); } |
#roundeven! ⇒ Integer
Set self to self rounded to the nearest representable integer, rounding halfway cases with the even-rounding rule.
3434 3435 3436 3437 3438 |
# File 'ext/mpfr_rb.c', line 3434 static VALUE mpfrrb_roundeven_B(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); return INT2NUM(mpfr_roundeven(mp, mp)); } |
#cot(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the secant of v, rounded in the direction round.
2827 2828 2829 2830 |
# File 'ext/mpfr_rb.c', line 2827 static VALUE mpfrrb_sec(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(sec); } |
#sech(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the hyperbolic secant of v, rounded in the direction round.
3048 3049 3050 3051 |
# File 'ext/mpfr_rb.c', line 3048 static VALUE mpfrrb_sech(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(sech); } |
#set(value, round: MPFR.default_rounding) ⇒ Integer
Set the value of the MPFR object.
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
# File 'ext/mpfr_rb.c', line 450 static VALUE mpfrrb_set(int argc, VALUE *argv, VALUE self) { VALUE valrb; VALUE kw; const ID kwkeys[1] = {id_round}; VALUE kwvalues[1] = {Qundef}; rb_scan_args(argc, argv, "1:", &valrb, &kw); mpfr_rnd_t rnd = mpfrrb_default_rounding; if (!NIL_P(kw)) { rb_get_kwargs(kw, kwkeys, 0, 1, kwvalues); if (kwvalues[0] != Qundef) { rnd = mpfrrb_sym2rnd(kwvalues[0]); } } mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfrrb_set_internal(mp, rnd, valrb, self); return INT2NUM(r); } |
#set_catalan(round: MPFR.default_rounding) ⇒ Integer
Set self to the value of of Catalan's constant 0.915..., rounded in the given direction.
990 991 992 993 994 |
# File 'ext/mpfr_rb.c', line 990 static VALUE mpfrrb_set_catalan(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); return INT2NUM(mpfr_const_catalan(mpfrrb_rb2ref(self), rnd)); } |
#set_euler(round: MPFR.default_rounding) ⇒ Integer
Set self to the value of of Euler's constant 0.577..., rounded in the given direction.
979 980 981 982 983 |
# File 'ext/mpfr_rb.c', line 979 static VALUE mpfrrb_set_euler(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); return INT2NUM(mpfr_const_euler(mpfrrb_rb2ref(self), rnd)); } |
#set_infinity(sign = 1) ⇒ self
Set self to infinity.
904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
# File 'ext/mpfr_rb.c', line 904 static VALUE mpfrrb_set_infinity(int argc, VALUE *argv, VALUE self) { VALUE signrb; int sign = 1; if (argc > 0) { rb_scan_args(argc, argv, "01", &signrb); if (!NIL_P(signrb)) { sign = NUM2INT(signrb); } } mpfr_ptr mp = mpfrrb_rb2ref(self); mpfr_set_inf(mp, sign); return self; } |
#set_log2(round: MPFR.default_rounding) ⇒ Integer
Set self to the logarithm of 2, rounded in the given direction.
957 958 959 960 961 |
# File 'ext/mpfr_rb.c', line 957 static VALUE mpfrrb_set_log2(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); return INT2NUM(mpfr_const_log2(mpfrrb_rb2ref(self), rnd)); } |
#set_nan ⇒ self
Set self to NaN.
870 871 872 873 874 875 |
# File 'ext/mpfr_rb.c', line 870 static VALUE mpfrrb_set_nan(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); mpfr_set_nan(mp); return self; } |
#set_pi(round: MPFR.default_rounding) ⇒ Integer
Set self to the value of Pi, rounded in the given direction.
968 969 970 971 972 |
# File 'ext/mpfr_rb.c', line 968 static VALUE mpfrrb_set_pi(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); return INT2NUM(mpfr_const_pi(mpfrrb_rb2ref(self), rnd)); } |
#set_zero(sign = 1) ⇒ self
Set self to zero.
883 884 885 886 887 888 889 890 891 892 893 894 895 896 |
# File 'ext/mpfr_rb.c', line 883 static VALUE mpfrrb_set_zero(int argc, VALUE *argv, VALUE self) { VALUE signrb; int sign = 1; if (argc > 0) { rb_scan_args(argc, argv, "01", &signrb); if (!NIL_P(signrb)) { sign = NUM2INT(signrb); } } mpfr_ptr mp = mpfrrb_rb2ref(self); mpfr_set_zero(mp, sign); return self; } |
#sign ⇒ Ingeger?
Returns either -1 or 1.
701 702 703 704 705 706 707 708 |
# File 'ext/mpfr_rb.c', line 701 static VALUE mpfrrb_get_sign(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); if (mpfr_nan_p(mp)) { return Qnil; } return INT2NUM(mpfr_sgn(mp) >= 0 ? 1 : -1); } |
#sign=(s) ⇒ Object
Set the sign of self to the sign of the argument.
714 715 716 717 718 719 720 |
# File 'ext/mpfr_rb.c', line 714 static VALUE mpfrrb_set_sign(VALUE self, VALUE s) { int p = NUM2INT(s); mpfr_ptr mp = mpfrrb_rb2ref(self); mpfr_setsign(mp, mp, p < 0, MPFR_RNDN); return s; } |
#sin(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the sine of v, rounded in the direction round.
2728 2729 2730 2731 |
# File 'ext/mpfr_rb.c', line 2728 static VALUE mpfrrb_sin(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(sin); } |
#sinh(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the hyperbolic sine of v, rounded in the direction round.
3028 3029 3030 3031 |
# File 'ext/mpfr_rb.c', line 3028 static VALUE mpfrrb_sinh(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(sinh); } |
#sinpi(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the sine of v multiplied by Pi, rounded in the direction round.
See the description of #sinu for special values.
2806 2807 2808 2809 |
# File 'ext/mpfr_rb.c', line 2806 static VALUE mpfrrb_sinpi(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(sinpi); } |
#cosu(x, u, round: MPFR.default_rounding) ⇒ Integer
Set self to the sine of x, multiplied by 2 Pi and divided by u, rounded in the direction round.
For example, if u equals 360, one gets the osine for x in degrees.
When x multiplied by 2 and divided by u is an integer, the result is zero with the same sign as x, following IEEE 754 (sinPi),
so that the function is odd.
2769 2770 2771 2772 |
# File 'ext/mpfr_rb.c', line 2769 static VALUE mpfrrb_sinu(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_UL_FUNC_BODY(sinu); } |
#sqr(a, round: MPFR.default_rounding) ⇒ Integer
Set self to the square of a, rounded int the direction round.
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 |
# File 'ext/mpfr_rb.c', line 1417 static VALUE mpfrrb_sqr(int argc, VALUE *argv, VALUE self) { VALUE a; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &a); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(a)) { MPFR_DECL_INIT(mpa, 53); mpfr_set_d(mpa, NUM2DBL(a), MPFR_RNDN); r = mpfr_sqr(mpr, mpa, rnd); } else if (RB_FIXNUM_P(a)) { MPFR_DECL_INIT(mpa, 64); mpfr_set_si(mpa, NUM2LL(a), MPFR_RNDN); r = mpfr_sqr(mpr, mpa, rnd); } else { a = mpfrrb_object_to_mpfr(a); r = mpfr_sqr(mpr, mpfrrb_rb2ref(a), rnd); } return INT2NUM(r); } |
#sqr!(round: MPFR.default_rounding) ⇒ Integer
Set self to the square of self, rounded int the direction round.
1444 1445 1446 1447 1448 1449 1450 |
# File 'ext/mpfr_rb.c', line 1444 static VALUE mpfrrb_sqr_B(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_sqr(mp, mp, rnd); return INT2NUM(r); } |
#sqrt(a, round: MPFR.default_rounding) ⇒ Integer
Set self to the square root of a, rounded int the direction round.
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 |
# File 'ext/mpfr_rb.c', line 1459 static VALUE mpfrrb_sqrt(int argc, VALUE *argv, VALUE self) { VALUE a; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &a); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(a)) { MPFR_DECL_INIT(mpa, 53); mpfr_set_d(mpa, NUM2DBL(a), MPFR_RNDN); r = mpfr_sqrt(mpr, mpa, rnd); } else if (RB_FIXNUM_P(a)) { long int i = NUM2LL(a); if (i < 0) { mpfr_set_nan(mpr); r = 0; } else { r = mpfr_sqrt_ui(mpr, i, rnd); } } else { a = mpfrrb_object_to_mpfr(a); r = mpfr_sqrt(mpr, mpfrrb_rb2ref(a), rnd); } return INT2NUM(r); } |
#sqrt!(round: MPFR.default_rounding) ⇒ Integer
Set self to the square root of self, rounded int the direction round.
1490 1491 1492 1493 1494 1495 1496 |
# File 'ext/mpfr_rb.c', line 1490 static VALUE mpfrrb_sqrt_B(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_sqrt(mp, mp, rnd); return INT2NUM(r); } |
#sub(a, b, round: MPFR.default_rounding) ⇒ Integer
Set the value of self to a - b rounded in the direction round.
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 |
# File 'ext/mpfr_rb.c', line 1162 static VALUE mpfrrb_sub(int argc, VALUE *argv, VALUE self) { VALUE a, b; mpfr_rnd_t rnd = mpfrrb_get_a_b_round(argc, argv, &a, &b); a = mpfrrb_object_to_mpfr(a); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (rb_obj_is_kind_of(a, c_MPFR)) { mpfr_ptr mpa = mpfrrb_rb2ref(a); if (RB_FLOAT_TYPE_P(b)) { r = mpfr_sub_d(mpr, mpa, NUM2DBL(b), rnd); } else if (RB_FIXNUM_P(b)) { r = mpfr_sub_si(mpr, mpa, NUM2LL(b), rnd); } else if (RB_INTEGER_TYPE_P(b)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(b, mpz); r = mpfr_sub_z(mpr, mpa, mpz, rnd); mpz_clear(mpz); } else if (RB_TYPE_P(b, T_RATIONAL)) { mpq_t mpq; mpq_init(mpq); mpfrrb_rational_to_mpq(b, mpq); r = mpfr_sub_q(mpr, mpa, mpq, rnd); mpq_clear(mpq); } else { b = mpfrrb_object_to_mpfr(b); r = mpfr_sub(mpr, mpa, mpfrrb_rb2ref(b), rnd); } } else { b = mpfrrb_object_to_mpfr(b); mpfr_ptr mpb = mpfrrb_rb2ref(b); if (RB_FLOAT_TYPE_P(a)) { r = mpfr_d_sub(mpr, NUM2DBL(a), mpb, rnd); } else if (RB_FIXNUM_P(a)) { r = mpfr_si_sub(mpr, NUM2LL(a), mpb, rnd); } else if (RB_INTEGER_TYPE_P(a)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(a, mpz); r = mpfr_z_sub(mpr, mpz, mpb, rnd); mpz_clear(mpz); } else { a = mpfrrb_object_to_mpfr(a); r = mpfr_sub(mpr, mpfrrb_rb2ref(a), mpb, rnd); } } return INT2NUM(r); } |
#sub!(b, round: MPFR.default_rounding) ⇒ Integer
Set the value of self to self - b rounded in the direction round.
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 |
# File 'ext/mpfr_rb.c', line 1220 static VALUE mpfrrb_sub_B(int argc, VALUE *argv, VALUE self) { VALUE b; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &b); mpfr_ptr mpr = mpfrrb_rb2ref(self); int r; if (RB_FLOAT_TYPE_P(b)) { r = mpfr_sub_d(mpr, mpr, NUM2DBL(b), rnd); } else if (RB_FIXNUM_P(b)) { r = mpfr_sub_si(mpr, mpr, NUM2LL(b), rnd); } else if (RB_INTEGER_TYPE_P(b)) { mpz_t mpz; mpz_init(mpz); mpfrrb_bignum_to_mpz(b, mpz); r = mpfr_sub_z(mpr, mpr, mpz, rnd); mpz_clear(mpz); } else if (RB_TYPE_P(b, T_RATIONAL)) { mpq_t mpq; mpq_init(mpq); mpfrrb_rational_to_mpq(b, mpq); r = mpfr_sub_q(mpr, mpr, mpq, rnd); mpq_clear(mpq); } else { b = mpfrrb_object_to_mpfr(b); r = mpfr_sub(mpr, mpr, mpfrrb_rb2ref(b), rnd); } return INT2NUM(r); } |
#subnormalize(t, round: MPFR.default_rounding) ⇒ Integer
This function rounds self emulating subnormal number arithmetic.
If self is outside the subnormal exponent range of the emulated floating-point system,
this function just propagates the ternary value t;
otherwise, if self.exponent denotes the exponent of self,
it rounds self to precision self.exponent - emin + 1 according to rounding mode round and previous ternary value t,
avoiding double rounding problems.
More precisely in the subnormal domain, denoting by e the value of emin,
self is rounded in fixed-point arithmetic to an integer multiple of two to the power e − 1;
as a consequence, 1.5 multiplied by two to the power e − 1 when t is zero is rounded to
two to the power e with rounding to nearest.
The precision self.prec of self is not modified by this function.
round and t must be the rounding mode and the returned ternary value used when computing self (as in mpfr_check_range).
The subnormal exponent range is from emin to emin + self.prec - 1.
If the result cannot be represented in the current exponent range of MPFR (due to a too small emax),
the behavior is undefined. Note that unlike most functions, the result is compared to the exact one,
not the input value self, i.e., the ternary value is propagated.
As usual, if the returned ternary value is non zero, the inexact flag is set. Moreover, if a second rounding occurred (because the input self was in the subnormal range), the underflow flag is set.
Warning! If you change emin (with emin=) just before calling mpfr_subnormalize, you need to make sure that the value is in the current exponent range of MPFR. But it is better to change emin before any computation, if possible.
This is an example of how to emulate binary64 IEEE 754 arithmetic (a.k.a. double precision) using MPFR:
MPFR.default_prec = 53
MPFR.emin = -1073
MPFR.emax = 1024
xa = MPFR.new
xb = MPFR.new
b = 34.3
xb.set(b, round: :nearest)
a = 0x11235.to_f * 2**-1037
xa.set(a, round: :nearest)
a /= b
i = xa.div(xa, xb, round: :nearest)
i = xa.subnormalize(i, round: :nearest) # new ternary value
Note that emin= and emax= are called early enough in order to make sure that all computed values are in the current exponent range. Warning! This emulates a double IEEE 754 arithmetic with correct rounding in the subnormal range, which may not be the case for your hardware.
Below is another example showing how to emulate fixed-point arithmetic in a specific case. Here we compute the sine of the integers 1 to 17 with a result in a fixed-point arithmetic rounded at two to the power -42 (using the fact that the result is at most 1 in absolute value):
MPFR.emin = -41
x = MPFR.new(prec: 42)
(1..17).each do |i|
x.set(i, round: :nearest)
inex = x.sin(x, round: :toward_zero)
x.subnormalize(inex, round: :toward_zero)
puts x
end
3806 3807 3808 3809 3810 3811 3812 3813 3814 |
# File 'ext/mpfr_rb.c', line 3806 static VALUE mpfrrb_subnormalize(int argc, VALUE *argv, VALUE self) { VALUE trb; mpfr_rnd_t rnd = mpfrrb_get_b_round(argc, argv, &trb); int t = NUM2INT(trb); mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_subnormalize(mp, t, rnd); return INT2NUM(r); } |
#tan(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the tangent of v, rounded in the direction round.
2738 2739 2740 2741 |
# File 'ext/mpfr_rb.c', line 2738 static VALUE mpfrrb_tan(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(tan); } |
#tanh(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the hyperbolic tangent of v, rounded in the direction round.
3038 3039 3040 3041 |
# File 'ext/mpfr_rb.c', line 3038 static VALUE mpfrrb_tanh(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(tanh); } |
#tanpi(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the tangent of v multiplied by Pi, rounded in the direction round.
See the description of #tanu for special values.
2817 2818 2819 2820 |
# File 'ext/mpfr_rb.c', line 2817 static VALUE mpfrrb_tanpi(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(tanpi); } |
#cosu(x, u, round: MPFR.default_rounding) ⇒ Integer
Set self to the tangent of x, multiplied by 2 Pi and divided by u, rounded in the direction round.
For example, if u equals 360, one gets the tangent for x in degrees.
The method #tanu follows IEEE 754 (tanPi).
2784 2785 2786 2787 |
# File 'ext/mpfr_rb.c', line 2784 static VALUE mpfrrb_tanu(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_UL_FUNC_BODY(tanu); } |
#to_f(round: MPFR.default_rounding) ⇒ Float
806 807 808 809 810 |
# File 'ext/mpfr_rb.c', line 806 static VALUE mpfrrb_to_f(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); return DBL2NUM(mpfr_get_d(mpfrrb_rb2ref(self), rnd)); } |
#to_i(round: MPFR.default_rounding) ⇒ Integer
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 |
# File 'ext/mpfr_rb.c', line 817 static VALUE mpfrrb_to_i(int argc, VALUE *argv, VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); if (mpfr_nan_p(mp)) { rb_raise(rb_eFloatDomainError, "NaN"); } else if (mpfr_inf_p(mp)) { rb_raise(rb_eFloatDomainError, "Infinity"); } else if (mpfr_zero_p(mp)) { return INT2NUM(0); } mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); if (mpfr_fits_slong_p(mp, rnd)) { return LL2NUM(mpfr_get_si(mp, rnd)); } mpz_t mpz; mpz_init(mpz); mpfr_get_z(mpz, mp, rnd); VALUE rbint = mpfrrb_mpz_to_bignum(mpz); mpz_clear(mpz); return rbint; } |
#to_mpfr ⇒ self
98 99 100 101 |
# File 'ext/mpfr_rb.c', line 98 static VALUE mpfrrb_MPFR_to_mpfr(VALUE self) { return self; } |
#to_r ⇒ Rational
Convert the MPFR object to a rational. Conversion is always exact, no rounding has to be specified.
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 |
# File 'ext/mpfr_rb.c', line 847 static VALUE mpfrrb_to_r(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); if (mpfr_nan_p(mp)) { rb_raise(rb_eFloatDomainError, "NaN"); } else if (mpfr_inf_p(mp)) { rb_raise(rb_eFloatDomainError, "Infinity"); } else if (mpfr_zero_p(mp)) { return rb_rational_new(INT2NUM(0), INT2NUM(1)); } mpq_t mpq; mpq_init(mpq); mpfr_get_q(mpq, mp); VALUE rat = mpfrrb_mpq_to_rational(mpq); mpq_clear(mpq); return rat; } |
#to_s(conv: 'g', round: :nearest, decimals: nil) ⇒ String Also known as: inspect
Return a string representation of the number.
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 |
# File 'ext/mpfr_rb.c', line 632 static VALUE mpfrrb_to_s(int argc, VALUE *argv, VALUE self) { VALUE kw; const ID kwkeys[3] = {id_conv, id_round, id_decimals}; VALUE kwvalues[3] = {Qundef, Qundef, Qundef}; mpfr_rnd_t rnd = MPFR_RNDN; char conv = 'g'; int n_decimals = 0; rb_scan_args(argc, argv, ":", &kw); if (!NIL_P(kw)) { rb_get_kwargs(kw, kwkeys, 0, 3, kwvalues); if (kwvalues[0] != Qundef) { Check_Type(kwvalues[0], T_STRING); const char *convstr = RSTRING_PTR(kwvalues[0]); int len = RSTRING_LEN(kwvalues[0]); if (len != 1 || (convstr[0] != 'a' && convstr[0] != 'A' && convstr[0] != 'b' && convstr[0] != 'e' && convstr[0] != 'E' && convstr[0] != 'f' && convstr[0] != 'F' && convstr[0] != 'g' && convstr[0] != 'G')) { rb_raise(rb_eArgError, "conv must be 'a', 'A', 'b', 'e', 'E', 'f', 'F', 'g' or 'G', \"%" PRIsVALUE "\" is invalid", kwvalues[0]); } conv = convstr[0]; } if (kwvalues[1] != Qundef) { rnd = mpfrrb_sym2rnd(kwvalues[1]); } if (kwvalues[2] != Qundef) { n_decimals = NUM2INT(kwvalues[2]); } } mpfr_ptr mp = mpfrrb_rb2ref(self); if (mpfr_nan_p(mp)) { return rb_sprintf("NaN"); } else if (mpfr_inf_p(mp)) { if (mpfr_sgn(mp) < 0) { return rb_sprintf("-Infinity"); } else { return rb_sprintf("Infinity"); } } // if (n_decimals == 0 && conv != 'a' && conv != 'A' && conv != 'b' && conv != 'B') { // return mpfrrb_to_s_autoprec(mp, conv, rnd); // } if (n_decimals == 0 && conv != 'a' && conv != 'A' && conv != 'b' && conv != 'B') { n_decimals = mpfr_get_str_ndigits(10, mpfr_get_prec(mp)); } char fmt[16]; char *str = NULL; int s; if (n_decimals > 0) { ruby_snprintf(fmt, sizeof(fmt), "%%.*R*%c", conv); s = mpfr_asprintf(&str, fmt, n_decimals, rnd, mp); } else { ruby_snprintf(fmt, sizeof(fmt), "%%R*%c", conv); s = mpfr_asprintf(&str, fmt, rnd, mp); } if (s < 1 || str == NULL) { return Qnil; } VALUE res = rb_str_new(str, s); mpfr_free_str(str); return res; } |
#to_sollya ⇒ Object
282 283 284 285 |
# File 'ext/sollya_rb.c', line 282 static VALUE sollyarb_MPFR_to_sollya(VALUE self) { return sollyarb_ref2rb(sollya_lib_constant(mpfrrb_rb2ref_ext(self)), c_SolFunction); } |
#trunc(op) ⇒ Integer
Set self to op rounded to the next representable integer toward zero.
3383 3384 3385 3386 |
# File 'ext/mpfr_rb.c', line 3383 static VALUE mpfrrb_trunc(VALUE self, VALUE op) { MPFRRB_ONE_ARG_NO_RND_FUNC_BODY(trunc); } |
#trunc! ⇒ Integer
Set self to self rounded to the next representable integer toward zero.
3444 3445 3446 3447 3448 |
# File 'ext/mpfr_rb.c', line 3444 static VALUE mpfrrb_trunc_B(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); return INT2NUM(mpfr_trunc(mp, mp)); } |
#urandom(round: MPFR.default_rounding) ⇒ Integer
Generate a uniformly distributed random float.
The floating-point number self can be seen as if a random real number is generated
according to the continuous uniform distribution on the interval [0, 1] and then rounded in the direction round.
3948 3949 3950 3951 3952 3953 3954 |
# File 'ext/mpfr_rb.c', line 3948 static VALUE mpfrrb_urandom(int argc, VALUE *argv, VALUE self) { mpfr_rnd_t rnd = mpfrrb_get_round_single_keword(argc, argv); mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_urandom(mp, mpfrrb_gmp_randstate, rnd); return INT2NUM(r); } |
#urandomb ⇒ Integer
Generate a uniformly distributed random float in the interval 0 ≤ self < 1. More precisely, the number can be seen as a float with a random non-normalized significand and exponent 0, which is then normalized (thus if e denotes the exponent after normalization, then the least -e significant bits of the significand are always 0).
Return 0, unless the exponent is not in the current exponent range, in which case self is set to NaN and a non-zero value is returned (this should never happen in practice, except in very specific cases).
3933 3934 3935 3936 3937 3938 |
# File 'ext/mpfr_rb.c', line 3933 static VALUE mpfrrb_urandomb(VALUE self) { mpfr_ptr mp = mpfrrb_rb2ref(self); int r = mpfr_urandomb(mp, mpfrrb_gmp_randstate); return INT2NUM(r); } |
#y1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the second kind Bessel function of order 0 on v, rounded in the direction round.
When v is NaN or negative, self is always set to NaN.
When v is +Inf, self is set to +0.
When v is zero, self is set to +Inf or -Inf depending on the parity and sign of n.
3266 3267 3268 3269 |
# File 'ext/mpfr_rb.c', line 3266 static VALUE mpfrrb_y0(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(y0); } |
#y1(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the second kind Bessel function of order 1 on v, rounded in the direction round.
When v is NaN or negative, self is always set to NaN.
When v is +Inf, self is set to +0.
When v is zero, self is set to +Inf or -Inf depending on the parity and sign of n.
3279 3280 3281 3282 |
# File 'ext/mpfr_rb.c', line 3279 static VALUE mpfrrb_y1(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(y1); } |
#yn(n, v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the second kind Bessel function of order n on v, rounded in the direction round.
When v is NaN or negative, self is always set to NaN.
When v is +Inf, self is set to +0.
When v is zero, self is set to +Inf or -Inf depending on the parity and sign of n.
3294 3295 3296 3297 |
# File 'ext/mpfr_rb.c', line 3294 static VALUE mpfrrb_yn(int argc, VALUE *argv, VALUE self) { MPFRRB_INT_MP_RND_FUNC_BODY(yn); } |
#zero? ⇒ Boolean
Tels if self is zero.
758 759 760 761 |
# File 'ext/mpfr_rb.c', line 758 static VALUE mpfrrb_is_zero(VALUE self) { return mpfr_zero_p(mpfrrb_rb2ref(self)) ? Qtrue : Qfalse; } |
#zeta(v, round: MPFR.default_rounding) ⇒ Integer
Set self to the value of the Riemann Zeta function on v, rounded in the directionround.
3192 3193 3194 3195 |
# File 'ext/mpfr_rb.c', line 3192 static VALUE mpfrrb_zeta(int argc, VALUE *argv, VALUE self) { MPFRRB_ONE_ARG_FUNC_BODY(zeta); } |