Class: Snow::Vec3
- Inherits:
-
Data
- Object
- Data
- Snow::Vec3
- Defined in:
- lib/snow-math/vec3.rb,
lib/snow-math/ptr.rb,
lib/snow-math/to_a.rb,
lib/snow-math/inspect.rb,
lib/snow-math/marshal.rb,
lib/snow-math/swizzle.rb,
ext/snow-math/snow-math.c
Overview
A 3-component vector class.
Constant Summary collapse
- @@SWIZZLE_CHARS =
/^[xyz]{2,4}$/
- @@SWIZZLE_MAPPING =
{ 2 => ::Snow::Vec2, 3 => self, 4 => ::Snow::Vec4, 'x' => 0, 'y' => 1, 'z' => 2 }
Class Method Summary collapse
-
.new(*args) ⇒ Object
(also: [])
Allocates a Vec3.
Instance Method Summary collapse
-
#==(sm_other) ⇒ Object
Tests whether a Vec3 is equivalent to another Vec3, a Vec4, or a Quat.
-
#add(*args) ⇒ Object
(also: #+)
Adds this and another vector’s components together and returns the result.
-
#add!(rhs) ⇒ Object
Calls #add(rhs, self).
-
#address ⇒ Object
Returns the memory address of the object.
-
#copy(*args) ⇒ Object
(also: #dup, #clone)
Returns a copy of self.
-
#cross_product(*args) ⇒ Object
(also: #^)
Returns the cross product of this vector and another Vec3.
-
#cross_product!(rhs) ⇒ Object
Calls #cross_product(rhs, self).
-
#divide(*args) ⇒ Object
(also: #/)
Divides this vector’s components by a scalar value and returns the result.
-
#divide!(rhs) ⇒ Object
Calls #divide(rhs, self).
-
#dot_product(sm_other) ⇒ Object
(also: #**)
Returns the dot product of this and another Vec3 or the XYZ components of a Vec4 or Quat.
-
#fetch ⇒ Object
(also: #[])
Gets the component of the Vec3 at the given index.
-
#initialize(*args) ⇒ Object
constructor
Sets the Vec3’s components.
-
#inverse(*args) ⇒ Object
(also: #~)
Returns a vector whose components are the multiplicative inverse of this vector’s.
-
#inverse! ⇒ Object
Calls #inverse(self).
-
#length ⇒ Object
Returns the length of the Vec3 in components.
-
#magnitude ⇒ Object
Returns the magnitude of self.
-
#magnitude_squared ⇒ Object
Returns the squared magnitude of self.
-
#multiply(rhs, output = nil) ⇒ Object
(also: #*)
Calls #multiply_vec3 and #scale, respectively.
-
#multiply!(rhs) ⇒ Object
Calls #multiply(rhs, self).
-
#multiply_vec3(*args) ⇒ Object
Multiplies this and another vector’s components together and returns the result.
-
#multiply_vec3!(rhs) ⇒ Object
Calls #multiply_vec3(rhs, self).
-
#negate(*args) ⇒ Object
(also: #-@)
Negates this vector’s components and returns the result.
-
#negate! ⇒ Object
Calls #negate(self).
-
#normalize(*args) ⇒ Object
Returns a vector whose components are the multiplicative inverse of this vector’s.
-
#normalize! ⇒ Object
Calls #normalize(self).
-
#project(*args) ⇒ Object
Projects this vector onto a normal vector and returns the result.
-
#reflect(*args) ⇒ Object
Reflects this vector against a normal vector and returns the result.
-
#scale(*args) ⇒ Object
Scales this vector’s components by a scalar value and returns the result.
-
#scale!(rhs) ⇒ Object
Calls #scale(rhs, self).
-
#set(*args) ⇒ Object
Sets the Vec3’s components.
-
#size ⇒ Object
Returns the length in bytes of the Vec3.
-
#store ⇒ Object
(also: #[]=)
Sets the Vec3’s component at the index to the value.
-
#subtract(*args) ⇒ Object
(also: #-)
Subtracts another vector’s components from this vector’s and returns the result.
-
#subtract!(rhs) ⇒ Object
Calls #subtract(rhs, self).
- #to_quat ⇒ Object
-
#to_s ⇒ Object
Returns a string representation of self.
- #to_vec2 ⇒ Object
- #to_vec3 ⇒ Object
- #to_vec4 ⇒ Object
-
#x ⇒ Object
Returns the X component of the vector.
-
#x=(value) ⇒ Object
Sets the X component of the vector.
-
#y ⇒ Object
Returns the Y component of the vector.
-
#y=(value) ⇒ Object
Sets the Y component of the vector.
-
#z ⇒ Object
Returns the Z component of the vector.
-
#z=(value) ⇒ Object
Sets the Z component of the vector.
Methods included from SwizzleSupport
#__under_method_missing__, #method_missing
Methods included from BaseMarshalSupport
Methods included from InspectSupport
Methods included from ArraySupport
Methods included from FiddlePointerSupport
Constructor Details
#initialize(*args) ⇒ Object
Sets the Vec3’s components.
call-seq:
set(x, y, z) -> vec3 with components [x, y, z]
set([x, y, z]) -> vec3 with components [x, y, z]
set(vec2) -> vec3 with components [vec2.xy, 0]
set(vec3) -> copy of vec3
set(vec4) -> vec3 with components [vec4.xyz]
set(quat) -> vec3 with components [quat.xyz]
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 |
# File 'ext/snow-math/snow-math.c', line 2689 static VALUE sm_vec3_init(int argc, VALUE *argv, VALUE sm_self) { vec3_t *self = sm_unwrap_vec3(sm_self, NULL); size_t arr_index = 0; rb_check_frozen(sm_self); switch(argc) { /* Default value */ case 0: { break; } /* Copy or by-array */ case 1: { if (SM_IS_A(argv[0], vec3) || SM_IS_A(argv[0], vec4) || SM_IS_A(argv[0], quat)) { sm_unwrap_vec3(argv[0], *self); break; } if (SM_IS_A(argv[0], vec2)) { sm_unwrap_vec2(argv[0], *self); self[0][2] = s_float_lit(0.0); break; } /* Optional offset into array provided */ if (0) { case 2: arr_index = NUM2SIZET(argv[1]); } /* Array of values */ if (SM_RB_IS_A(argv[0], rb_cArray)) { VALUE arrdata = argv[0]; const size_t arr_end = arr_index + 3; s_float_t *vec_elem = *self; for (; arr_index < arr_end; ++arr_index, ++vec_elem) { *vec_elem = (s_float_t)rb_num2dbl(rb_ary_entry(arrdata, (long)arr_index)); } break; } rb_raise(rb_eArgError, "Expected either an array of Numerics or a Vec3"); break; } /* X, Y, Z */ case 3: { self[0][0] = (s_float_t)rb_num2dbl(argv[0]); self[0][1] = (s_float_t)rb_num2dbl(argv[1]); self[0][2] = (s_float_t)rb_num2dbl(argv[2]); break; } default: { rb_raise(rb_eArgError, "Invalid arguments to initialize/set"); break; } } /* switch (argc) */ return sm_self; } |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method in the class Snow::SwizzleSupport
Class Method Details
.new(*args) ⇒ Object Also known as: []
Allocates a Vec3.
call-seq:
new() -> vec3 with components [0, 0, 0]
new(x, y, z) -> vec3 with components [x, y, z]
new([x, y, z]) -> vec3 with components [x, y, z]
new(vec3) -> copy of vec3
new(vec4) -> vec3 of vec4's x, y, and z components
new(quat) -> vec3 of quat's x, y, and z components
2669 2670 2671 2672 2673 2674 |
# File 'ext/snow-math/snow-math.c', line 2669 static VALUE sm_vec3_new(int argc, VALUE *argv, VALUE self) { VALUE sm_vec = sm_wrap_vec3(g_vec3_zero, self); rb_obj_call_init(sm_vec, argc, argv); return sm_vec; } |
Instance Method Details
#==(sm_other) ⇒ Object
Tests whether a Vec3 is equivalent to another Vec3, a Vec4, or a Quat. When testing for equivalency against 4-component objects, only the first three components are compared.
call-seq:
vec3 == other_vec3 -> bool
vec3 == vec4 -> bool
vec3 == quat -> bool
2875 2876 2877 2878 2879 2880 2881 2882 |
# File 'ext/snow-math/snow-math.c', line 2875 static VALUE sm_vec3_equals(VALUE sm_self, VALUE sm_other) { if (!RTEST(sm_other) || (!SM_IS_A(sm_other, vec3) && !SM_IS_A(sm_other, vec4) && !SM_IS_A(sm_other, quat))) { return Qfalse; } return vec3_equals(*sm_unwrap_vec3(sm_self, NULL), *sm_unwrap_vec3(sm_other, NULL)) ? Qtrue : Qfalse; } |
#add(*args) ⇒ Object Also known as: +
Adds this and another vector’s components together and returns the result.
call-seq:
add(vec3, output = nil) -> output or new vec3
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 |
# File 'ext/snow-math/snow-math.c', line 2538 static VALUE sm_vec3_add(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_rhs; VALUE sm_out; vec3_t *self; vec3_t *rhs; rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out); self = sm_unwrap_vec3(sm_self, NULL); if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_rhs)); return Qnil; } rhs = sm_unwrap_vec3(sm_rhs, NULL); if (argc == 2) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ vec3_t *output; if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } rb_check_frozen(sm_out); output = sm_unwrap_vec3(sm_out, NULL); vec3_add(*self, *rhs, *output); }} else if (argc == 1) { SM_LABEL(skip_output): { vec3_t output; vec3_add(*self, *rhs, output); sm_out = sm_wrap_vec3(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to add"); } return sm_out; } |
#add!(rhs) ⇒ Object
Calls #add(rhs, self)
call-seq: add!(rhs) -> self
155 156 157 |
# File 'lib/snow-math/vec3.rb', line 155 def add!(rhs) add rhs, self end |
#address ⇒ Object
Returns the memory address of the object.
call-seq: address -> fixnum
6683 6684 6685 6686 6687 6688 |
# File 'ext/snow-math/snow-math.c', line 6683 static VALUE sm_get_address(VALUE sm_self) { void *data_ptr = NULL; Data_Get_Struct(sm_self, void, data_ptr); return ULL2NUM((unsigned long long)data_ptr); } |
#copy(*args) ⇒ Object Also known as: dup, clone
Returns a copy of self.
call-seq:
copy(output = nil) -> output or new vec3
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 |
# File 'ext/snow-math/snow-math.c', line 2179 static VALUE sm_vec3_copy(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out; vec3_t *self; rb_scan_args(argc, argv, "01", &sm_out); self = sm_unwrap_vec3(sm_self, NULL); if (argc == 1) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ vec3_t *output; if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } rb_check_frozen(sm_out); output = sm_unwrap_vec3(sm_out, NULL); vec3_copy (*self, *output); }} else if (argc == 0) { SM_LABEL(skip_output): { vec3_t output; vec3_copy (*self, output); sm_out = sm_wrap_vec3(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to copy"); } return sm_out; } |
#cross_product(*args) ⇒ Object Also known as: ^
Returns the cross product of this vector and another Vec3.
call-seq:
cross_product(vec3, output = nil) -> output or new vec3
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 |
# File 'ext/snow-math/snow-math.c', line 2439 static VALUE sm_vec3_cross_product(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_rhs; VALUE sm_out; vec3_t *self; vec3_t *rhs; rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out); self = sm_unwrap_vec3(sm_self, NULL); if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_rhs)); return Qnil; } rhs = sm_unwrap_vec3(sm_rhs, NULL); if (argc == 2) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ vec3_t *output; if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } rb_check_frozen(sm_out); output = sm_unwrap_vec3(sm_out, NULL); vec3_cross_product(*self, *rhs, *output); }} else if (argc == 1) { SM_LABEL(skip_output): { vec3_t output; vec3_cross_product(*self, *rhs, output); sm_out = sm_wrap_vec3(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to cross_product"); } return sm_out; } |
#cross_product!(rhs) ⇒ Object
Calls #cross_product(rhs, self)
call-seq: cross_product!(rhs) -> self
121 122 123 |
# File 'lib/snow-math/vec3.rb', line 121 def cross_product!(rhs) cross_product rhs, self end |
#divide(*args) ⇒ Object Also known as: /
Divides this vector’s components by a scalar value and returns the result.
call-seq:
divide(scalar, output = nil) -> output or new vec3
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 |
# File 'ext/snow-math/snow-math.c', line 2840 static VALUE sm_vec3_divide(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out; VALUE sm_scalar; s_float_t scalar; vec3_t *self = sm_unwrap_vec3(sm_self, NULL); rb_scan_args(argc, argv, "11", &sm_scalar, &sm_out); scalar = rb_num2dbl(sm_scalar); if (SM_IS_A(sm_out, vec3) || SM_IS_A(sm_out, vec4) || SM_IS_A(sm_out, quat)) { rb_check_frozen(sm_out); vec3_divide(*self, scalar, *sm_unwrap_vec3(sm_out, NULL)); } else { vec3_t out; vec3_divide(*self, scalar, out); sm_out = sm_wrap_vec3(out, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); } return sm_out; } |
#divide!(rhs) ⇒ Object
Calls #divide(rhs, self)
call-seq: divide!(rhs) -> self
176 177 178 |
# File 'lib/snow-math/vec3.rb', line 176 def divide!(rhs) divide rhs, self end |
#dot_product(sm_other) ⇒ Object Also known as: **
Returns the dot product of this and another Vec3 or the XYZ components of a Vec4 or Quat.
call-seq:
dot_product(vec3) -> float
dot_product(vec4) -> float
dot_product(quat) -> float
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 |
# File 'ext/snow-math/snow-math.c', line 2640 static VALUE sm_vec3_dot_product(VALUE sm_self, VALUE sm_other) { if (!SM_IS_A(sm_other, vec3) && !SM_IS_A(sm_other, vec4) && !SM_IS_A(sm_other, quat)) { rb_raise(rb_eArgError, "Expected a Quat, Vec3, or Vec4, got %s", rb_obj_classname(sm_other)); return Qnil; } return rb_float_new( vec3_dot_product( *sm_unwrap_vec3(sm_self, NULL), *sm_unwrap_vec3(sm_other, NULL))); } |
#fetch ⇒ Object Also known as: []
Gets the component of the Vec3 at the given index.
call-seq: fetch(index) -> float
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 |
# File 'ext/snow-math/snow-math.c', line 2112 static VALUE sm_vec3_fetch (VALUE sm_self, VALUE sm_index) { static const int max_index = sizeof(vec3_t) / sizeof(s_float_t); const vec3_t *self = sm_unwrap_vec3(sm_self, NULL); int index = NUM2INT(sm_index); if (index < 0 || index >= max_index) { rb_raise(rb_eRangeError, "Index %d is out of bounds, must be from 0 through %d", index, max_index - 1); } return rb_float_new(self[0][NUM2INT(sm_index)]); } |
#inverse(*args) ⇒ Object Also known as: ~
Returns a vector whose components are the multiplicative inverse of this vector’s.
call-seq:
inverse(output = nil) -> output or new vec3
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 |
# File 'ext/snow-math/snow-math.c', line 2261 static VALUE sm_vec3_inverse(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out; vec3_t *self; rb_scan_args(argc, argv, "01", &sm_out); self = sm_unwrap_vec3(sm_self, NULL); if (argc == 1) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ vec3_t *output; if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } rb_check_frozen(sm_out); output = sm_unwrap_vec3(sm_out, NULL); vec3_inverse (*self, *output); }} else if (argc == 0) { SM_LABEL(skip_output): { vec3_t output; vec3_inverse (*self, output); sm_out = sm_wrap_vec3(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to inverse"); } return sm_out; } |
#inverse! ⇒ Object
Calls #inverse(self)
call-seq: inverse! -> self
107 108 109 |
# File 'lib/snow-math/vec3.rb', line 107 def inverse! inverse self end |
#length ⇒ Object
Returns the length of the Vec3 in components. Result is always 3.
call-seq: length -> fixnum
2166 2167 2168 2169 |
# File 'ext/snow-math/snow-math.c', line 2166 static VALUE sm_vec3_length (VALUE self) { return SIZET2NUM(sizeof(vec3_t) / sizeof(s_float_t)); } |
#magnitude ⇒ Object
Returns the magnitude of self.
call-seq:
magnitude -> float
2796 2797 2798 2799 |
# File 'ext/snow-math/snow-math.c', line 2796 static VALUE sm_vec3_magnitude(VALUE sm_self) { return rb_float_new(vec3_length(*sm_unwrap_vec3(sm_self, NULL))); } |
#magnitude_squared ⇒ Object
Returns the squared magnitude of self.
call-seq:
magnitude_squared -> float
2783 2784 2785 2786 |
# File 'ext/snow-math/snow-math.c', line 2783 static VALUE sm_vec3_magnitude_squared(VALUE sm_self) { return rb_float_new(vec3_length_squared(*sm_unwrap_vec3(sm_self, NULL))); } |
#multiply(rhs, output = nil) ⇒ Object Also known as: *
Calls #multiply_vec3 and #scale, respectively.
call-seq:
multiply(vec3, output) -> output or new vec3
multiply(scalar, output) -> output or new vec3
137 138 139 140 141 142 143 |
# File 'lib/snow-math/vec3.rb', line 137 def multiply(rhs, output = nil) case rhs when ::Snow::Vec3, ::Snow::Vec4, ::Snow::Quat then multiply_vec3(rhs, output) when Numeric then scale(rhs, output) else raise TypeError, "Invalid type for RHS" end end |
#multiply!(rhs) ⇒ Object
Calls #multiply(rhs, self)
call-seq: multiply!(rhs) -> self
148 149 150 |
# File 'lib/snow-math/vec3.rb', line 148 def multiply!(rhs) multiply rhs, self end |
#multiply_vec3(*args) ⇒ Object
Multiplies this and another vector’s components together and returns the result.
call-seq:
multiply_vec3(vec3, output = nil) -> output or new vec3
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 |
# File 'ext/snow-math/snow-math.c', line 2489 static VALUE sm_vec3_multiply(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_rhs; VALUE sm_out; vec3_t *self; vec3_t *rhs; rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out); self = sm_unwrap_vec3(sm_self, NULL); if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_rhs)); return Qnil; } rhs = sm_unwrap_vec3(sm_rhs, NULL); if (argc == 2) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ vec3_t *output; if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } rb_check_frozen(sm_out); output = sm_unwrap_vec3(sm_out, NULL); vec3_multiply(*self, *rhs, *output); }} else if (argc == 1) { SM_LABEL(skip_output): { vec3_t output; vec3_multiply(*self, *rhs, output); sm_out = sm_wrap_vec3(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to multiply_vec3"); } return sm_out; } |
#multiply_vec3!(rhs) ⇒ Object
Calls #multiply_vec3(rhs, self)
call-seq: multiply_vec3!(rhs) -> self
128 129 130 |
# File 'lib/snow-math/vec3.rb', line 128 def multiply_vec3!(rhs) multiply_vec3 rhs, self end |
#negate(*args) ⇒ Object Also known as: -@
Negates this vector’s components and returns the result.
call-seq:
negate(output = nil) -> output or new vec3
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 |
# File 'ext/snow-math/snow-math.c', line 2301 static VALUE sm_vec3_negate(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out; vec3_t *self; rb_scan_args(argc, argv, "01", &sm_out); self = sm_unwrap_vec3(sm_self, NULL); if (argc == 1) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ vec3_t *output; if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } rb_check_frozen(sm_out); output = sm_unwrap_vec3(sm_out, NULL); vec3_negate (*self, *output); }} else if (argc == 0) { SM_LABEL(skip_output): { vec3_t output; vec3_negate (*self, output); sm_out = sm_wrap_vec3(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to negate"); } return sm_out; } |
#negate! ⇒ Object
Calls #negate(self)
call-seq: negate! -> self
114 115 116 |
# File 'lib/snow-math/vec3.rb', line 114 def negate! negate self end |
#normalize(*args) ⇒ Object
Returns a vector whose components are the multiplicative inverse of this vector’s.
call-seq:
normalize(output = nil) -> output or new vec3
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 |
# File 'ext/snow-math/snow-math.c', line 2220 static VALUE sm_vec3_normalize(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out; vec3_t *self; rb_scan_args(argc, argv, "01", &sm_out); self = sm_unwrap_vec3(sm_self, NULL); if (argc == 1) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ vec3_t *output; if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } rb_check_frozen(sm_out); output = sm_unwrap_vec3(sm_out, NULL); vec3_normalize (*self, *output); }} else if (argc == 0) { SM_LABEL(skip_output): { vec3_t output; vec3_normalize (*self, output); sm_out = sm_wrap_vec3(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to normalize"); } return sm_out; } |
#normalize! ⇒ Object
Calls #normalize(self)
call-seq: normalize! -> self
100 101 102 |
# File 'lib/snow-math/vec3.rb', line 100 def normalize! normalize self end |
#project(*args) ⇒ Object
Projects this vector onto a normal vector and returns the result.
call-seq:
project(normal, output = nil) -> output or new vec3
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 |
# File 'ext/snow-math/snow-math.c', line 2341 static VALUE sm_vec3_project(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_rhs; VALUE sm_out; vec3_t *self; vec3_t *rhs; rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out); self = sm_unwrap_vec3(sm_self, NULL); if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_rhs)); return Qnil; } rhs = sm_unwrap_vec3(sm_rhs, NULL); if (argc == 2) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ vec3_t *output; if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } rb_check_frozen(sm_out); output = sm_unwrap_vec3(sm_out, NULL); vec3_project(*self, *rhs, *output); }} else if (argc == 1) { SM_LABEL(skip_output): { vec3_t output; vec3_project(*self, *rhs, output); sm_out = sm_wrap_vec3(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to project"); } return sm_out; } |
#reflect(*args) ⇒ Object
Reflects this vector against a normal vector and returns the result.
call-seq:
reflect(normal, output = nil) -> output or new vec3
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 |
# File 'ext/snow-math/snow-math.c', line 2390 static VALUE sm_vec3_reflect(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_rhs; VALUE sm_out; vec3_t *self; vec3_t *rhs; rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out); self = sm_unwrap_vec3(sm_self, NULL); if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_rhs)); return Qnil; } rhs = sm_unwrap_vec3(sm_rhs, NULL); if (argc == 2) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ vec3_t *output; if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } rb_check_frozen(sm_out); output = sm_unwrap_vec3(sm_out, NULL); vec3_reflect(*self, *rhs, *output); }} else if (argc == 1) { SM_LABEL(skip_output): { vec3_t output; vec3_reflect(*self, *rhs, output); sm_out = sm_wrap_vec3(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to reflect"); } return sm_out; } |
#scale(*args) ⇒ Object
Scales this vector’s components by a scalar value and returns the result.
call-seq:
scale(scalar, output = nil) -> output or new vec3
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 |
# File 'ext/snow-math/snow-math.c', line 2809 static VALUE sm_vec3_scale(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out; VALUE sm_scalar; s_float_t scalar; vec3_t *self = sm_unwrap_vec3(sm_self, NULL); rb_scan_args(argc, argv, "11", &sm_scalar, &sm_out); scalar = rb_num2dbl(sm_scalar); if (SM_IS_A(sm_out, vec3) || SM_IS_A(sm_out, vec4) || SM_IS_A(sm_out, quat)) { rb_check_frozen(sm_out); vec3_scale(*self, scalar, *sm_unwrap_vec3(sm_out, NULL)); } else { vec3_t out; vec3_scale(*self, scalar, out); sm_out = sm_wrap_vec3(out, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); } return sm_out; } |
#scale!(rhs) ⇒ Object
Calls #scale(rhs, self)
call-seq: scale!(rhs) -> self
169 170 171 |
# File 'lib/snow-math/vec3.rb', line 169 def scale!(rhs) scale rhs, self end |
#set(*args) ⇒ Object
Sets the Vec3’s components.
call-seq:
set(x, y, z) -> vec3 with components [x, y, z]
set([x, y, z]) -> vec3 with components [x, y, z]
set(vec2) -> vec3 with components [vec2.xy, 0]
set(vec3) -> copy of vec3
set(vec4) -> vec3 with components [vec4.xyz]
set(quat) -> vec3 with components [quat.xyz]
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 |
# File 'ext/snow-math/snow-math.c', line 2689 static VALUE sm_vec3_init(int argc, VALUE *argv, VALUE sm_self) { vec3_t *self = sm_unwrap_vec3(sm_self, NULL); size_t arr_index = 0; rb_check_frozen(sm_self); switch(argc) { /* Default value */ case 0: { break; } /* Copy or by-array */ case 1: { if (SM_IS_A(argv[0], vec3) || SM_IS_A(argv[0], vec4) || SM_IS_A(argv[0], quat)) { sm_unwrap_vec3(argv[0], *self); break; } if (SM_IS_A(argv[0], vec2)) { sm_unwrap_vec2(argv[0], *self); self[0][2] = s_float_lit(0.0); break; } /* Optional offset into array provided */ if (0) { case 2: arr_index = NUM2SIZET(argv[1]); } /* Array of values */ if (SM_RB_IS_A(argv[0], rb_cArray)) { VALUE arrdata = argv[0]; const size_t arr_end = arr_index + 3; s_float_t *vec_elem = *self; for (; arr_index < arr_end; ++arr_index, ++vec_elem) { *vec_elem = (s_float_t)rb_num2dbl(rb_ary_entry(arrdata, (long)arr_index)); } break; } rb_raise(rb_eArgError, "Expected either an array of Numerics or a Vec3"); break; } /* X, Y, Z */ case 3: { self[0][0] = (s_float_t)rb_num2dbl(argv[0]); self[0][1] = (s_float_t)rb_num2dbl(argv[1]); self[0][2] = (s_float_t)rb_num2dbl(argv[2]); break; } default: { rb_raise(rb_eArgError, "Invalid arguments to initialize/set"); break; } } /* switch (argc) */ return sm_self; } |
#size ⇒ Object
Returns the length in bytes of the Vec3. When compiled to use doubles as the base type, this is always 24. Otherwise, when compiled to use floats, it’s always 12.
call-seq: size -> fixnum
2154 2155 2156 2157 |
# File 'ext/snow-math/snow-math.c', line 2154 static VALUE sm_vec3_size (VALUE self) { return SIZET2NUM(sizeof(vec3_t)); } |
#store ⇒ Object Also known as: []=
Sets the Vec3’s component at the index to the value.
call-seq: store(index, value) -> value
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 |
# File 'ext/snow-math/snow-math.c', line 2131 static VALUE sm_vec3_store (VALUE sm_self, VALUE sm_index, VALUE sm_value) { static const int max_index = sizeof(vec3_t) / sizeof(s_float_t); vec3_t *self = sm_unwrap_vec3(sm_self, NULL); int index = NUM2INT(sm_index); rb_check_frozen(sm_self); if (index < 0 || index >= max_index) { rb_raise(rb_eRangeError, "Index %d is out of bounds, must be from 0 through %d", index, max_index - 1); } self[0][index] = (s_float_t)rb_num2dbl(sm_value); return sm_value; } |
#subtract(*args) ⇒ Object Also known as: -
Subtracts another vector’s components from this vector’s and returns the result.
call-seq:
subtract(vec3, output = nil) -> output or new vec3
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 |
# File 'ext/snow-math/snow-math.c', line 2588 static VALUE sm_vec3_subtract(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_rhs; VALUE sm_out; vec3_t *self; vec3_t *rhs; rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out); self = sm_unwrap_vec3(sm_self, NULL); if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_rhs)); return Qnil; } rhs = sm_unwrap_vec3(sm_rhs, NULL); if (argc == 2) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ vec3_t *output; if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } rb_check_frozen(sm_out); output = sm_unwrap_vec3(sm_out, NULL); vec3_subtract(*self, *rhs, *output); }} else if (argc == 1) { SM_LABEL(skip_output): { vec3_t output; vec3_subtract(*self, *rhs, output); sm_out = sm_wrap_vec3(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to subtract"); } return sm_out; } |
#subtract!(rhs) ⇒ Object
Calls #subtract(rhs, self)
call-seq: subtract!(rhs) -> self
162 163 164 |
# File 'lib/snow-math/vec3.rb', line 162 def subtract!(rhs) subtract rhs, self end |
#to_quat ⇒ Object
51 52 53 |
# File 'lib/snow-math/vec3.rb', line 51 def to_quat Quat.new(self) end |
#to_s ⇒ Object
Returns a string representation of self.
Vec3[].to_s # => "{ 0.0, 0.0, 0.0 }"
call-seq:
to_s -> string
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 |
# File 'ext/snow-math/snow-math.c', line 2764 static VALUE sm_vec3_to_s(VALUE self) { const s_float_t *v; v = (const s_float_t *)*sm_unwrap_vec3(self, NULL); return rb_sprintf( "{ " "%f, %f, %f" " }", v[0], v[1], v[2]); } |
#to_vec2 ⇒ Object
39 40 41 |
# File 'lib/snow-math/vec3.rb', line 39 def to_vec2 Vec2.new(self) end |
#to_vec3 ⇒ Object
43 44 45 |
# File 'lib/snow-math/vec3.rb', line 43 def to_vec3 Vec3.new(self) end |
#to_vec4 ⇒ Object
47 48 49 |
# File 'lib/snow-math/vec3.rb', line 47 def to_vec4 Vec4.new(self) end |
#x ⇒ Object
Returns the X component of the vector.
call-seq: x -> float
58 59 60 |
# File 'lib/snow-math/vec3.rb', line 58 def x self[0] end |
#x=(value) ⇒ Object
Sets the X component of the vector.
call-seq: x = value -> value
65 66 67 |
# File 'lib/snow-math/vec3.rb', line 65 def x=(value) self[0] = value end |
#y ⇒ Object
Returns the Y component of the vector.
call-seq: y -> float
72 73 74 |
# File 'lib/snow-math/vec3.rb', line 72 def y self[1] end |
#y=(value) ⇒ Object
Sets the Y component of the vector.
call-seq: y = value -> value
79 80 81 |
# File 'lib/snow-math/vec3.rb', line 79 def y=(value) self[1] = value end |
#z ⇒ Object
Returns the Z component of the vector.
call-seq: z -> float
86 87 88 |
# File 'lib/snow-math/vec3.rb', line 86 def z self[2] end |
#z=(value) ⇒ Object
Sets the Z component of the vector.
call-seq: z = value -> value
93 94 95 |
# File 'lib/snow-math/vec3.rb', line 93 def z=(value) self[2] = value end |