Class: Snow::Mat4
- Inherits:
-
Object
- Object
- Snow::Mat4
- Includes:
- ArraySupport, BaseMarshalSupport, FiddlePointerSupport, InspectSupport
- Defined in:
- lib/snow-math/mat4.rb,
lib/snow-math/ptr.rb,
lib/snow-math/to_a.rb,
lib/snow-math/inspect.rb,
lib/snow-math/marshal.rb,
ext/snow-math/snow-math.c
Overview
A 4x4 matrix. Useful for anything from rotation to projection to almost any other 3D transformation you might need.
Class Method Summary collapse
-
.angle_axis(*args) ⇒ Object
Returns a Mat4 describing a rotation around an axis.
-
.frustum(*args) ⇒ Object
Returns a matrix describing a frustum perspective.
-
.look_at(*args) ⇒ Object
Returns a matrix describing a view transformation for an eye looking at center with the given up vector.
-
.new(*args) ⇒ Object
(also: [])
Allocates a new Mat4.
-
.orthographic(*args) ⇒ Object
Returns a matrix describing an orthographic projection.
-
.perspective(*args) ⇒ Object
Returns a matrix describing a perspective projection.
-
.translation(*args) ⇒ Object
Returns a translation matrix for the given X, Y, and Z translations (or using the vector’s components as such).
Instance Method Summary collapse
-
#==(sm_other) ⇒ Object
Tests this Mat4 and another Mat4 for equivalency.
-
#address ⇒ Object
Returns the memory address of the object.
-
#adjoint(*args) ⇒ Object
Returns an adjoint matrix.
-
#adjoint! ⇒ Object
Calls #adjoint(self).
-
#copy(*args) ⇒ Object
(also: #dup, #clone)
Returns a copy of self.
-
#determinant ⇒ Object
Returns the matrix determinant.
-
#fetch ⇒ Object
(also: #[])
Gets the component of the Mat4 at the given index.
-
#get_column3(*args) ⇒ Object
Returns a Vec3 whose components are that of the column at the given index.
-
#get_column4(*args) ⇒ Object
Returns a Vec4 whose components are that of the column at the given index.
-
#get_row3(*args) ⇒ Object
Returns a Vec3 whose components are that of the row at the given index.
-
#get_row4(*args) ⇒ Object
Returns a Vec4 whose components are that of the row at the given index.
-
#initialize(*args) ⇒ Object
constructor
Sets the Mat4’s components.
-
#inverse_affine(*args) ⇒ Object
Returns an inverse affine matrix if successful.
-
#inverse_affine! ⇒ Object
Calls #inverse_affine(self).
-
#inverse_general(*args) ⇒ Object
Returns an generalized inverse matrix if successful.
-
#inverse_general! ⇒ Object
Calls #inverse_general(self).
-
#inverse_orthogonal(*args) ⇒ Object
Returns an inverse orthogonal matrix.
-
#inverse_orthogonal! ⇒ Object
Calls #inverse_orthogonal(self).
-
#inverse_rotate_vec3(*args) ⇒ Object
Convenience function to rotate a Vec3 using the inverse of self.
-
#inverse_rotate_vec3!(rhs) ⇒ Object
Calls #inverse_rotate_vec3(rhs, rhs).
-
#length ⇒ Object
Returns the length of the Mat4 in components.
-
#load_identity ⇒ Object
Sets self to the identity matrix.
-
#multiply(rhs, out = nil) ⇒ Object
(also: #*)
Calls #multiply_mat4, #multiply_vec4, #transform_vec3, and #scale, respectively.
-
#multiply!(rhs) ⇒ Object
Calls #multiply(rhs, self) when rhs is a scalar or Mat4, otherwise calls #multiply(rhs, rhs).
-
#multiply_mat4(*args) ⇒ Object
Multiplies this and another Mat4 together and returns the result.
-
#multiply_mat4!(rhs) ⇒ Object
Calls #multiply_mat4(rhs, self).
-
#multiply_vec4(*args) ⇒ Object
Transforms a Vec4 using self and returns the resulting vector.
-
#multiply_vec4!(rhs) ⇒ Object
Calls #multiply_vec4(rhs, rhs).
-
#rotate_vec3(*args) ⇒ Object
Rotates a Vec3 by self, using only the inner 9x9 matrix to transform the vector.
-
#rotate_vec3!(rhs) ⇒ Object
Calls #inverse_transform_vec3(rhs, rhs).
-
#scale(*args) ⇒ Object
(also: #**)
Scales the inner 9x9 matrix’s columns by X, Y, and Z and returns the result.
-
#scale!(x, y, z) ⇒ Object
Calls #scale(x, y, z, self).
-
#set(*args) ⇒ Object
Sets the Mat4’s components.
-
#set_column3(sm_index, sm_value) ⇒ Object
Sets the matrix’s column at the given index to the given vector.
-
#set_column4(sm_index, sm_value) ⇒ Object
Sets the matrix’s column at the given index to the given vector.
-
#set_row3(sm_index, sm_value) ⇒ Object
Sets the matrix’s row at the given index to the given vector.
-
#set_row4(sm_index, sm_value) ⇒ Object
Sets the matrix’s row at the given index to the given vector.
-
#size ⇒ Object
Returns the length in bytes of the Mat4.
-
#store ⇒ Object
(also: #[]=)
Sets the Mat4’s component at the index to the value.
-
#to_mat3(*args) ⇒ Object
Converts the Mat4 to a Mat3.
-
#to_s ⇒ Object
Returns a string representation of self.
-
#transform_vec3(*args) ⇒ Object
Transforms a Vec3 using self and returns the resulting vector.
-
#transform_vec3!(rhs) ⇒ Object
Calls #transform_vec3(rhs, rhs).
-
#translate(*args) ⇒ Object
Translates this matrix by X, Y, and Z (or a Vec3’s X, Y, and Z components) and returns the result.
-
#translate!(*args) ⇒ Object
Calls #translate(*args, self).
-
#transpose(*args) ⇒ Object
(also: #~)
Transposes this matrix and returns the result.
-
#transpose! ⇒ Object
Calls #transpose(self).
Methods included from BaseMarshalSupport
Methods included from InspectSupport
Methods included from ArraySupport
Methods included from FiddlePointerSupport
Constructor Details
#initialize(*args) ⇒ Object
Sets the Mat4’s components.
call-seq:
set(m1, m2, ..., m15, m16) -> new mat4 with components
set([m1, m2, ..., m15, m16]) -> new mat4 with components
set(mat4) -> copy of mat4
set(mat3) -> new mat4 with mat3's components
set(quat) -> quat as mat4
set(Vec4, Vec4, Vec4, Vec4) -> new mat4 with given row vectors
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 |
# File 'ext/snow-math/snow-math.c', line 3823 static VALUE sm_mat4_init(int argc, VALUE *argv, VALUE sm_self) { mat4_t *self = sm_unwrap_mat4(sm_self, NULL); size_t arr_index = 0; switch (argc) { case 0: { // Identity (handled in _new) break; } // Copy Mat4 or provided [Numeric..] case 1: { // Copy Mat4 if (SM_IS_A(argv[0], mat4)) { sm_unwrap_mat4(argv[0], *self); break; } // Copy Mat3 if (SM_IS_A(argv[0], mat3)) { mat3_to_mat4(*sm_unwrap_mat4(argv[0], NULL), *self); break; } // Build from Quaternion if (SM_IS_A(argv[0], quat)) { mat4_from_quat(*sm_unwrap_quat(argv[0], NULL), *self); break; } // Optional offset into array provided if (0) { case 2: arr_index = NUM2SIZET(argv[1]); } // Array of values if (SM_RB_IS_A(argv[0], rb_cArray)) { VALUE arrdata = argv[0]; const size_t arr_end = arr_index + 16; s_float_t *mat_elem = *self; for (; arr_index < arr_end; ++arr_index, ++mat_elem) { *mat_elem = rb_num2dbl(rb_ary_entry(arrdata, (long)arr_index)); } break; } rb_raise(rb_eArgError, "Expected either an array of Numerics or a Mat4"); break; } // Mat4(Vec4, Vec4, Vec4, Vec4) case 4: { size_t arg_index; s_float_t *mat_elem = *self; for (arg_index = 0; arg_index < 4; ++arg_index, mat_elem += 4) { if (!SM_IS_A(argv[arg_index], vec4) && !SM_IS_A(argv[arg_index], quat)) { rb_raise( rb_eArgError, "Argument %d must be a Vec4 or Quat when supplying four arguments to Mat4.initialize/set", (int)(arg_index + 1)); } sm_unwrap_vec4(argv[arg_index], mat_elem); } break; } // Mat4(Numeric m00 .. m16) case 16: { s_float_t *mat_elem = *self; VALUE *argv_p = argv; for (; argc; --argc, ++argv_p, ++mat_elem) { *mat_elem = (s_float_t)rb_num2dbl(*argv_p); } break; } default: { rb_raise(rb_eArgError, "Invalid arguments to Mat4.initialize"); break; } } // swtich (argc) return sm_self; } |
Class Method Details
.angle_axis(*args) ⇒ Object
Returns a Mat4 describing a rotation around an axis.
call-seq:
angle_axis(angle_degrees, axis_vec3, output = nil) -> output or new mat4
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 |
# File 'ext/snow-math/snow-math.c', line 3950 static VALUE sm_mat4_angle_axis(int argc, VALUE *argv, VALUE self) { VALUE sm_angle; VALUE sm_axis; VALUE sm_out; s_float_t angle; const vec3_t *axis; rb_scan_args(argc, argv, "21", &sm_angle, &sm_axis, &sm_out); if (!SM_IS_A(sm_axis, vec3) && !SM_IS_A(sm_axis, vec4) && !SM_IS_A(sm_axis, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_axis)); return Qnil; } angle = (s_float_t)rb_num2dbl(sm_angle); axis = sm_unwrap_vec3(sm_axis, NULL); if (SM_IS_A(sm_out, mat4)) { mat4_t *out = sm_unwrap_mat4(sm_out, NULL); mat4_rotation(angle, (*axis)[0], (*axis)[1], (*axis)[2], *out); } else { mat4_t out; mat4_rotation(angle, (*axis)[0], (*axis)[1], (*axis)[2], out); sm_out = sm_wrap_mat4(out, self); rb_obj_call_init(sm_out, 0, 0); } return sm_out; } |
.frustum(*args) ⇒ Object
Returns a matrix describing a frustum perspective.
call-seq:
frustum(left, right, bottom, top, z_near, z_far, output = nil) -> output or new mat4
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 |
# File 'ext/snow-math/snow-math.c', line 4397 static VALUE sm_mat4_frustum(int argc, VALUE *argv, VALUE self) { VALUE sm_left; VALUE sm_right; VALUE sm_bottom; VALUE sm_top; VALUE sm_z_near; VALUE sm_z_far; VALUE sm_out; s_float_t left; s_float_t right; s_float_t bottom; s_float_t top; s_float_t z_near; s_float_t z_far; rb_scan_args(argc, argv, "61", &sm_left, &sm_right, &sm_bottom, &sm_top, &sm_z_near, &sm_z_far, &sm_out); left = (s_float_t)rb_num2dbl(sm_left); right = (s_float_t)rb_num2dbl(sm_right); bottom = (s_float_t)rb_num2dbl(sm_bottom); top = (s_float_t)rb_num2dbl(sm_top); z_near = (s_float_t)rb_num2dbl(sm_z_near); z_far = (s_float_t)rb_num2dbl(sm_z_far); if (SM_IS_A(sm_out, mat4)) { mat4_t *out = sm_unwrap_mat4(sm_out, NULL); mat4_frustum(left, right, bottom, top, z_near, z_far, *out); } else { mat4_t out; mat4_frustum(left, right, bottom, top, z_near, z_far, out); sm_out = sm_wrap_mat4(out, Qnil); rb_obj_call_init(sm_out, 0, 0); } return sm_out; } |
.look_at(*args) ⇒ Object
Returns a matrix describing a view transformation for an eye looking at center with the given up vector.
call-seq:
look_at(eye, center, up, output = nil) -> output or new mat4
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 |
# File 'ext/snow-math/snow-math.c', line 4530 static VALUE sm_mat4_look_at(int argc, VALUE *argv, VALUE self) { VALUE sm_eye; VALUE sm_center; VALUE sm_up; VALUE sm_out; const vec3_t *eye; const vec3_t *center; const vec3_t *up; rb_scan_args(argc, argv, "31", &sm_eye, &sm_center, &sm_up, &sm_out); eye = sm_unwrap_vec3(sm_eye, NULL); center = sm_unwrap_vec3(sm_center, NULL); up = sm_unwrap_vec3(sm_up, NULL); if (SM_IS_A(sm_out, mat4)) { mat4_t *out = sm_unwrap_mat4(sm_out, NULL); mat4_look_at(*eye, *center, *up, *out); } else { mat4_t out; mat4_look_at(*eye, *center, *up, out); sm_out = sm_wrap_mat4(out, self); rb_obj_call_init(sm_out, 0, 0); } return sm_out; } |
.new(*args) ⇒ Object Also known as: []
Allocates a new Mat4.
call-seq:
new() -> identity mat4
new(m1, m2, ..., m15, m16) -> new mat4 with components
new([m1, m2, ..., m15, m16]) -> new mat4 with components
new(mat4) -> copy of mat4
new(mat3) -> new mat4 with mat3's components
new(quat) -> quat as mat4
new(Vec4, Vec4, Vec4, Vec4) -> new mat4 with given row vectors
3803 3804 3805 3806 3807 3808 |
# File 'ext/snow-math/snow-math.c', line 3803 static VALUE sm_mat4_new(int argc, VALUE *argv, VALUE self) { VALUE sm_mat = sm_wrap_mat4(g_mat4_identity, self); rb_obj_call_init(sm_mat, argc, argv); return sm_mat; } |
.orthographic(*args) ⇒ Object
Returns a matrix describing an orthographic projection.
call-seq:
orthographic(left, right, bottom, top, z_near, z_far, output = nil) -> output or new mat4
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 |
# File 'ext/snow-math/snow-math.c', line 4443 static VALUE sm_mat4_orthographic(int argc, VALUE *argv, VALUE self) { VALUE sm_left; VALUE sm_right; VALUE sm_bottom; VALUE sm_top; VALUE sm_z_near; VALUE sm_z_far; VALUE sm_out; s_float_t left; s_float_t right; s_float_t bottom; s_float_t top; s_float_t z_near; s_float_t z_far; rb_scan_args(argc, argv, "61", &sm_left, &sm_right, &sm_bottom, &sm_top, &sm_z_near, &sm_z_far, &sm_out); left = (s_float_t)rb_num2dbl(sm_left); right = (s_float_t)rb_num2dbl(sm_right); bottom = (s_float_t)rb_num2dbl(sm_bottom); top = (s_float_t)rb_num2dbl(sm_top); z_near = (s_float_t)rb_num2dbl(sm_z_near); z_far = (s_float_t)rb_num2dbl(sm_z_far); if (SM_IS_A(sm_out, mat4)) { mat4_t *out = sm_unwrap_mat4(sm_out, NULL); mat4_orthographic(left, right, bottom, top, z_near, z_far, *out); } else { mat4_t out; mat4_orthographic(left, right, bottom, top, z_near, z_far, out); sm_out = sm_wrap_mat4(out, self); rb_obj_call_init(sm_out, 0, 0); } return sm_out; } |
.perspective(*args) ⇒ Object
Returns a matrix describing a perspective projection.
call-seq:
perspective(fov_y_degrees, aspect, z_near, z_far, output = nil) -> output or new mat4
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 |
# File 'ext/snow-math/snow-math.c', line 4489 static VALUE sm_mat4_perspective(int argc, VALUE *argv, VALUE self) { VALUE sm_fov_y; VALUE sm_aspect; VALUE sm_z_near; VALUE sm_z_far; VALUE sm_out; s_float_t fov_y; s_float_t aspect; s_float_t z_near; s_float_t z_far; rb_scan_args(argc, argv, "41", &sm_fov_y, &sm_aspect, &sm_z_near, &sm_z_far, &sm_out); fov_y = (s_float_t)rb_num2dbl(sm_fov_y); aspect = (s_float_t)rb_num2dbl(sm_aspect); z_near = (s_float_t)rb_num2dbl(sm_z_near); z_far = (s_float_t)rb_num2dbl(sm_z_far); if (SM_IS_A(sm_out, mat4)) { mat4_t *out = sm_unwrap_mat4(sm_out, NULL); mat4_perspective(fov_y, aspect, z_near, z_far, *out); } else { mat4_t out; mat4_perspective(fov_y, aspect, z_near, z_far, out); sm_out = sm_wrap_mat4(out, self); rb_obj_call_init(sm_out, 0, 0); } return sm_out; } |
.translation(*args) ⇒ Object
Returns a translation matrix for the given X, Y, and Z translations (or using the vector’s components as such).
call-seq:
translation(x, y, z, output = nil) -> output or new mat4
translation(vec3, output = nil) -> output or new mat4
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 |
# File 'ext/snow-math/snow-math.c', line 3748 static VALUE sm_mat4_translation(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out = Qnil; vec3_t xyz; SM_LABEL(argc_reconfig): switch (argc) { case 2: case 4: { sm_out = argv[--argc]; if (RTEST(sm_out)) { SM_RAISE_IF_NOT_TYPE(sm_out, mat4); } goto SM_LABEL(argc_reconfig); } case 1: { sm_unwrap_vec3(argv[0], xyz); goto SM_LABEL(get_output); } case 3: { xyz[0] = rb_num2dbl(argv[0]); xyz[1] = rb_num2dbl(argv[1]); xyz[2] = rb_num2dbl(argv[2]); SM_LABEL(get_output): if (RTEST(sm_out)) { mat4_t *out = sm_unwrap_mat4(sm_out, NULL); mat4_translation(xyz[0], xyz[1], xyz[2], *out); } else { mat4_t out; mat4_translation(xyz[0], xyz[1], xyz[2], out); sm_out = sm_wrap_mat4(out, sm_self); rb_obj_call_init(sm_out, 0, 0); } } } return sm_out; } |
Instance Method Details
#==(sm_other) ⇒ Object
Tests this Mat4 and another Mat4 for equivalency.
call-seq:
mat4 == other_mat4 -> bool
4599 4600 4601 4602 4603 4604 4605 4606 |
# File 'ext/snow-math/snow-math.c', line 4599 static VALUE sm_mat4_equals(VALUE sm_self, VALUE sm_other) { if (!RTEST(sm_other) || !SM_IS_A(sm_other, mat4)) { return Qfalse; } return mat4_equals(*sm_unwrap_mat4(sm_self, NULL), *sm_unwrap_mat4(sm_other, NULL)) ? Qtrue : Qfalse; } |
#address ⇒ Object
Returns the memory address of the object.
call-seq: address -> fixnum
5564 5565 5566 5567 5568 5569 |
# File 'ext/snow-math/snow-math.c', line 5564 static VALUE sm_get_address(VALUE sm_self) { void *data_ptr = NULL; Data_Get_Struct(sm_self, void, data_ptr); return ULL2NUM((unsigned long long)data_ptr); } |
#adjoint(*args) ⇒ Object
Returns an adjoint matrix.
call-seq:
adjoint(output = nil) -> output or new mat4
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 |
# File 'ext/snow-math/snow-math.c', line 3314 static VALUE sm_mat4_adjoint(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out; mat4_t *self; rb_scan_args(argc, argv, "01", &sm_out); self = sm_unwrap_mat4(sm_self, NULL); if (argc == 1) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ SM_RAISE_IF_NOT_TYPE(sm_out, mat4); mat4_t *output = sm_unwrap_mat4(sm_out, NULL); mat4_adjoint (*self, *output); }} else if (argc == 0) { SM_LABEL(skip_output): { mat4_t output; mat4_adjoint (*self, output); sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to adjoint"); } return sm_out; } |
#adjoint! ⇒ Object
Calls #adjoint(self)
call-seq: adjoint! -> self
57 58 59 |
# File 'lib/snow-math/mat4.rb', line 57 def adjoint! adjoint self end |
#copy(*args) ⇒ Object Also known as: dup, clone
Returns a copy of self.
call-seq:
copy(output = nil) -> output or new mat4
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 |
# File 'ext/snow-math/snow-math.c', line 3182 static VALUE sm_mat4_copy(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out; mat4_t *self; rb_scan_args(argc, argv, "01", &sm_out); self = sm_unwrap_mat4(sm_self, NULL); if (argc == 1) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ SM_RAISE_IF_NOT_TYPE(sm_out, mat4); mat4_t *output = sm_unwrap_mat4(sm_out, NULL); mat4_copy (*self, *output); }} else if (argc == 0) { SM_LABEL(skip_output): { mat4_t output; mat4_copy (*self, output); sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to copy"); } return sm_out; } |
#determinant ⇒ Object
Returns the matrix determinant.
call-seq:
determinant -> float
3680 3681 3682 3683 |
# File 'ext/snow-math/snow-math.c', line 3680 static VALUE sm_mat4_determinant(VALUE sm_self) { return mat4_determinant(*sm_unwrap_mat4(sm_self, NULL)); } |
#fetch ⇒ Object Also known as: []
Gets the component of the Mat4 at the given index.
call-seq: fetch(index) -> float
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 |
# File 'ext/snow-math/snow-math.c', line 3116 static VALUE sm_mat4_fetch (VALUE sm_self, VALUE sm_index) { static const int max_index = sizeof(mat4_t) / sizeof(s_float_t); const mat4_t *self = sm_unwrap_mat4(sm_self, NULL); int index = NUM2INT(sm_index); if (index < 0 || index >= max_index) { rb_raise(rb_eRangeError, "Index %d is out of bounds, must be from 0 through %d", index, max_index - 1); } return rb_float_new(self[0][NUM2INT(sm_index)]); } |
#get_column3(*args) ⇒ Object
Returns a Vec3 whose components are that of the column at the given index.
call-seq:
get_column3(index, output = nil) -> output or new vec3
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 |
# File 'ext/snow-math/snow-math.c', line 4116 static VALUE sm_mat4_get_column3(int argc, VALUE *argv, VALUE sm_self) { mat4_t *self; int index; VALUE sm_out; self = sm_unwrap_mat4(sm_self, NULL); index = NUM2INT(argv[0]); sm_out = Qnil; if (index < 0 || index > 3) { rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index); return Qnil; } switch (argc) { case 2: { vec3_t *out; sm_out = argv[1]; if (RTEST(sm_out)) { if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } } else { goto SM_LABEL(no_output); } out = sm_unwrap_vec3(sm_out, NULL); mat4_get_column3(*self, index, *out); break; } case 1: SM_LABEL(no_output): { vec3_t out; mat4_get_column3(*self, index, out); sm_out = sm_wrap_vec3(out, Qnil); rb_obj_call_init(sm_out, 0, 0); break; } default: { rb_raise(rb_eArgError, "Invalid number of arguments to get_column3 - expected 1 or 2"); break; } } return sm_out; } |
#get_column4(*args) ⇒ Object
Returns a Vec4 whose components are that of the column at the given index.
call-seq:
get_column4(index, output = nil) -> output or new vec4
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 |
# File 'ext/snow-math/snow-math.c', line 4179 static VALUE sm_mat4_get_column4(int argc, VALUE *argv, VALUE sm_self) { mat4_t *self; int index; VALUE sm_out; self = sm_unwrap_mat4(sm_self, NULL); index = NUM2INT(argv[0]); sm_out = Qnil; if (index < 0 || index > 3) { rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index); return Qnil; } switch (argc) { case 2: { vec4_t *out; sm_out = argv[1]; if (RTEST(sm_out)) { if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } } else { goto SM_LABEL(no_output); } out = sm_unwrap_vec4(sm_out, NULL); mat4_get_column4(*self, index, *out); break; } case 1: SM_LABEL(no_output): { vec4_t out; mat4_get_column4(*self, index, out); sm_out = sm_wrap_vec4(out, Qnil); rb_obj_call_init(sm_out, 0, 0); break; } default: { rb_raise(rb_eArgError, "Invalid number of arguments to get_column4 - expected 1 or 2"); break; } } return sm_out; } |
#get_row3(*args) ⇒ Object
Returns a Vec3 whose components are that of the row at the given index.
call-seq:
get_row3(index, output = nil) -> output or new vec3
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 |
# File 'ext/snow-math/snow-math.c', line 3990 static VALUE sm_mat4_get_row3(int argc, VALUE *argv, VALUE sm_self) { mat4_t *self; int index; VALUE sm_out; self = sm_unwrap_mat4(sm_self, NULL); index = NUM2INT(argv[0]); sm_out = Qnil; if (index < 0 || index > 3) { rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index); return Qnil; } switch (argc) { case 2: { vec3_t *out; sm_out = argv[1]; if (RTEST(sm_out)) { if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } } else { goto SM_LABEL(no_output); } out = sm_unwrap_vec3(sm_out, NULL); mat4_get_row3(*self, index, *out); break; } case 1: SM_LABEL(no_output): { vec3_t out; mat4_get_row3(*self, index, out); sm_out = sm_wrap_vec3(out, Qnil); rb_obj_call_init(sm_out, 0, 0); break; } default: { rb_raise(rb_eArgError, "Invalid number of arguments to get_row3 - expected 1 or 2"); break; } } return sm_out; } |
#get_row4(*args) ⇒ Object
Returns a Vec4 whose components are that of the row at the given index.
call-seq:
get_row4(index, output = nil) -> output or new vec4
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 |
# File 'ext/snow-math/snow-math.c', line 4053 static VALUE sm_mat4_get_row4(int argc, VALUE *argv, VALUE sm_self) { mat4_t *self; int index; VALUE sm_out; self = sm_unwrap_mat4(sm_self, NULL); index = NUM2INT(argv[0]); sm_out = Qnil; if (index < 0 || index > 3) { rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index); return Qnil; } switch (argc) { case 2: { vec4_t *out; sm_out = argv[1]; if (RTEST(sm_out)) { if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } } else { goto SM_LABEL(no_output); } out = sm_unwrap_vec4(sm_out, NULL); mat4_get_row4(*self, index, *out); break; } case 1: SM_LABEL(no_output): { vec4_t out; mat4_get_row4(*self, index, out); sm_out = sm_wrap_vec4(out, Qnil); rb_obj_call_init(sm_out, 0, 0); break; } default: { rb_raise(rb_eArgError, "Invalid number of arguments to get_row4 - expected 1 or 2"); break; } } return sm_out; } |
#inverse_affine(*args) ⇒ Object
Returns an inverse affine matrix if successful. Otherwise, returns nil.
call-seq:
inverse_affine(output = nil) -> output, new mat4, or nil
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 |
# File 'ext/snow-math/snow-math.c', line 3574 static VALUE sm_mat4_inverse_affine(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out = Qnil; mat4_t *self; rb_scan_args(argc, argv, "01", &sm_out); self = sm_unwrap_mat4(sm_self, NULL); if (argc == 1) { mat4_t *output; if (!RTEST(sm_out)) { goto SM_LABEL(output_lbl); } if (!SM_IS_A(sm_out, mat4)) { rb_raise(rb_eTypeError, "Invalid argument to output of inverse_affine: expected %s, got %s", rb_class2name(s_sm_mat4_klass), rb_obj_classname(sm_out)); return Qnil; } output = sm_unwrap_mat4(sm_out, NULL); if (!mat4_inverse_affine(*self, *output)) { return Qnil; } } else if (argc == 0) { SM_LABEL(output_lbl): { mat4_t output; if (!mat4_inverse_affine(*self, output)) { return Qnil; } sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); } } else { rb_raise(rb_eArgError, "Invalid number of arguments to inverse_affine"); } return sm_out; } |
#inverse_affine! ⇒ Object
Calls #inverse_affine(self)
call-seq: inverse_affine! -> self
145 146 147 |
# File 'lib/snow-math/mat4.rb', line 145 def inverse_affine! inverse_affine self end |
#inverse_general(*args) ⇒ Object
Returns an generalized inverse matrix if successful. Otherwise, returns nil.
call-seq:
inverse_general(output = nil) -> output, new mat4, or nil
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 |
# File 'ext/snow-math/snow-math.c', line 3627 static VALUE sm_mat4_inverse_general(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out = Qnil; mat4_t *self; rb_scan_args(argc, argv, "01", &sm_out); self = sm_unwrap_mat4(sm_self, NULL); if (argc == 1) { mat4_t *output; if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); } if (!SM_IS_A(sm_out, mat4)) { rb_raise(rb_eTypeError, "Invalid argument to output of inverse_general: expected %s, got %s", rb_class2name(s_sm_mat4_klass), rb_obj_classname(sm_out)); return Qnil; } output = sm_unwrap_mat4(sm_out, NULL); if (!mat4_inverse_general(*self, *output)) { return Qnil; } } else if (argc == 0) { SM_LABEL(skip_output): { mat4_t output; if (!mat4_inverse_general(*self, output)) { return Qnil; } sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); } } else { rb_raise(rb_eArgError, "Invalid number of arguments to inverse_general"); } return sm_out; } |
#inverse_general! ⇒ Object
Calls #inverse_general(self)
call-seq: inverse_general! -> self
152 153 154 |
# File 'lib/snow-math/mat4.rb', line 152 def inverse_general! inverse_general self end |
#inverse_orthogonal(*args) ⇒ Object
Returns an inverse orthogonal matrix.
call-seq:
inverse_orthogonal(output = nil) -> output or new mat4
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 |
# File 'ext/snow-math/snow-math.c', line 3281 static VALUE sm_mat4_inverse_orthogonal(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out; mat4_t *self; rb_scan_args(argc, argv, "01", &sm_out); self = sm_unwrap_mat4(sm_self, NULL); if (argc == 1) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ SM_RAISE_IF_NOT_TYPE(sm_out, mat4); mat4_t *output = sm_unwrap_mat4(sm_out, NULL); mat4_inverse_orthogonal (*self, *output); }} else if (argc == 0) { SM_LABEL(skip_output): { mat4_t output; mat4_inverse_orthogonal (*self, output); sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to inverse_orthogonal"); } return sm_out; } |
#inverse_orthogonal! ⇒ Object
Calls #inverse_orthogonal(self)
call-seq: inverse_orthogonal! -> self
50 51 52 |
# File 'lib/snow-math/mat4.rb', line 50 def inverse_orthogonal! inverse_orthogonal self end |
#inverse_rotate_vec3(*args) ⇒ Object
Convenience function to rotate a Vec3 using the inverse of self. Returns the resulting vector.
call-seq:
inv_rotate_vec3(vec3, output = nil) -> output or new vec3
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 |
# File 'ext/snow-math/snow-math.c', line 3527 static VALUE sm_mat4_inv_rotate_vec3(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_rhs; VALUE sm_out; mat4_t *self; vec3_t *rhs; rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out); self = sm_unwrap_mat4(sm_self, NULL); if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_rhs)); return Qnil; } rhs = sm_unwrap_vec3(sm_rhs, NULL); if (argc == 2) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } vec3_t *output = sm_unwrap_vec3(sm_out, NULL); mat4_inv_rotate_vec3(*self, *rhs, *output); }} else if (argc == 1) { SM_LABEL(skip_output): { vec3_t output; mat4_inv_rotate_vec3(*self, *rhs, output); sm_out = sm_wrap_vec3(output, rb_obj_class(sm_rhs)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to vec3"); } return sm_out; } |
#inverse_rotate_vec3!(rhs) ⇒ Object
Calls #inverse_rotate_vec3(rhs, rhs)
call-seq: inverse_rotate_vec3!(rhs) -> rhs
92 93 94 |
# File 'lib/snow-math/mat4.rb', line 92 def inverse_rotate_vec3!(rhs) inverse_rotate_vec3 rhs, rhs end |
#length ⇒ Object
Returns the length of the Mat4 in components. Result is always 16.
call-seq: length -> fixnum
3169 3170 3171 3172 |
# File 'ext/snow-math/snow-math.c', line 3169 static VALUE sm_mat4_length (VALUE self) { return SIZET2NUM(sizeof(mat4_t) / sizeof(s_float_t)); } |
#load_identity ⇒ Object
Sets self to the identity matrix.
call-seq:
load_identity -> self
4382 4383 4384 4385 4386 4387 |
# File 'ext/snow-math/snow-math.c', line 4382 static VALUE sm_mat4_identity(VALUE sm_self) { mat4_t *self = sm_unwrap_mat4(sm_self, NULL); mat4_identity(*self); return sm_self; } |
#multiply(rhs, out = nil) ⇒ Object Also known as: *
Calls #multiply_mat4, #multiply_vec4, #transform_vec3, and #scale, respectively.
When calling multiply with scalar as rhs, scalar is passed as the value to scale all columns by.
call-seq:
multiply(mat4, output = nil) -> output or new mat4
multiply(vec4, output = nil) -> output or new vec4
multiply(vec3, output = nil) -> output or new vec3
multiply(scalar, output = nil) -> output or new mat4
107 108 109 110 111 112 113 114 115 |
# File 'lib/snow-math/mat4.rb', line 107 def multiply(rhs, out = nil) case rhs when ::Snow::Mat4 then multiply_mat4(rhs, out) when ::Snow::Vec4 then multiply_vec4(rhs, out) when ::Snow::Vec3 then transform_vec3(rhs, out) when Numeric then scale(rhs, rhs, rhs, out) else raise TypeError, "Invalid type for RHS" end end |
#multiply!(rhs) ⇒ Object
Calls #multiply(rhs, self) when rhs is a scalar or Mat4, otherwise calls #multiply(rhs, rhs).
119 120 121 122 123 124 125 |
# File 'lib/snow-math/mat4.rb', line 119 def multiply!(rhs) multiply rhs, case rhs when Mat4, Numeric then self when Vec4, Vec3 then rhs else raise TypeError, "Invalid type for RHS" end end |
#multiply_mat4(*args) ⇒ Object
Multiplies this and another Mat4 together and returns the result.
call-seq:
multiply_mat4(mat4, output = nil) -> output or new mat4
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 |
# File 'ext/snow-math/snow-math.c', line 3347 static VALUE sm_mat4_multiply(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_rhs; VALUE sm_out; mat4_t *self; mat4_t *rhs; rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out); self = sm_unwrap_mat4(sm_self, NULL); SM_RAISE_IF_NOT_TYPE(sm_rhs, mat4); rhs = sm_unwrap_mat4(sm_rhs, NULL); if (argc == 2) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ SM_RAISE_IF_NOT_TYPE(sm_out, mat4); mat4_t *output = sm_unwrap_mat4(sm_out, NULL); mat4_multiply(*self, *rhs, *output); }} else if (argc == 1) { SM_LABEL(skip_output): { mat4_t output; mat4_multiply(*self, *rhs, output); sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to mat4"); } return sm_out; } |
#multiply_mat4!(rhs) ⇒ Object
Calls #multiply_mat4(rhs, self)
call-seq: multiply_mat4!(rhs) -> self
64 65 66 |
# File 'lib/snow-math/mat4.rb', line 64 def multiply_mat4!(rhs) multiply_mat4 rhs, self end |
#multiply_vec4(*args) ⇒ Object
Transforms a Vec4 using self and returns the resulting vector.
call-seq:
multiply_vec4(vec4, output = nil) -> output or new vec4
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 |
# File 'ext/snow-math/snow-math.c', line 3384 static VALUE sm_mat4_multiply_vec4(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_rhs; VALUE sm_out; mat4_t *self; vec4_t *rhs; rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out); self = sm_unwrap_mat4(sm_self, NULL); if (!SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) { rb_raise(rb_eTypeError, kSM_WANT_FOUR_FORMAT_LIT, rb_obj_classname(sm_rhs)); return Qnil; } rhs = sm_unwrap_vec4(sm_rhs, NULL); if (argc == 2) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } vec4_t *output = sm_unwrap_vec4(sm_out, NULL); mat4_multiply_vec4(*self, *rhs, *output); }} else if (argc == 1) { SM_LABEL(skip_output): { vec4_t output; mat4_multiply_vec4(*self, *rhs, output); sm_out = sm_wrap_vec4(output, rb_obj_class(sm_rhs)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to vec4"); } return sm_out; } |
#multiply_vec4!(rhs) ⇒ Object
Calls #multiply_vec4(rhs, rhs)
call-seq: multiply_vec4!(rhs) -> rhs
71 72 73 |
# File 'lib/snow-math/mat4.rb', line 71 def multiply_vec4!(rhs) multiply_vec4 rhs, rhs end |
#rotate_vec3(*args) ⇒ Object
Rotates a Vec3 by self, using only the inner 9x9 matrix to transform the vector. Returns the rotated vector.
call-seq:
rotate_vec3(vec3, output = nil) -> output or new vec3
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 |
# File 'ext/snow-math/snow-math.c', line 3479 static VALUE sm_mat4_rotate_vec3(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_rhs; VALUE sm_out; mat4_t *self; vec3_t *rhs; rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out); self = sm_unwrap_mat4(sm_self, NULL); if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_rhs)); return Qnil; } rhs = sm_unwrap_vec3(sm_rhs, NULL); if (argc == 2) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } vec3_t *output = sm_unwrap_vec3(sm_out, NULL); mat4_rotate_vec3(*self, *rhs, *output); }} else if (argc == 1) { SM_LABEL(skip_output): { vec3_t output; mat4_rotate_vec3(*self, *rhs, output); sm_out = sm_wrap_vec3(output, rb_obj_class(sm_rhs)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to vec3"); } return sm_out; } |
#rotate_vec3!(rhs) ⇒ Object
Calls #inverse_transform_vec3(rhs, rhs)
call-seq: inverse_transform_vec3!(rhs) -> rhs
85 86 87 |
# File 'lib/snow-math/mat4.rb', line 85 def rotate_vec3!(rhs) inverse_transform_vec3 rhs, rhs end |
#scale(*args) ⇒ Object Also known as: **
Scales the inner 9x9 matrix’s columns by X, Y, and Z and returns the result.
call-seq:
scale(x, y, z, output = nil) -> output or new mat4
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 |
# File 'ext/snow-math/snow-math.c', line 4567 static VALUE sm_mat4_scale(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out; VALUE sm_x, sm_y, sm_z; s_float_t x, y, z; mat4_t *self = sm_unwrap_mat4(sm_self, NULL); rb_scan_args(argc, argv, "31", &sm_x, &sm_y, &sm_z, &sm_out); x = rb_num2dbl(sm_x); y = rb_num2dbl(sm_y); z = rb_num2dbl(sm_z); if (SM_IS_A(sm_out, mat4)) { mat4_scale(*self, x, y, z, *sm_unwrap_mat4(sm_out, NULL)); } else { mat4_t out; mat4_scale(*self, x, y, z, out); sm_out = sm_wrap_mat4(out, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); } return sm_out; } |
#scale!(x, y, z) ⇒ Object
Calls #scale(x, y, z, self)
call-seq: scale!(x, y, z) -> self
130 131 132 |
# File 'lib/snow-math/mat4.rb', line 130 def scale!(x, y, z) scale x, y, z, self end |
#set(*args) ⇒ Object
Sets the Mat4’s components.
call-seq:
set(m1, m2, ..., m15, m16) -> new mat4 with components
set([m1, m2, ..., m15, m16]) -> new mat4 with components
set(mat4) -> copy of mat4
set(mat3) -> new mat4 with mat3's components
set(quat) -> quat as mat4
set(Vec4, Vec4, Vec4, Vec4) -> new mat4 with given row vectors
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 |
# File 'ext/snow-math/snow-math.c', line 3823 static VALUE sm_mat4_init(int argc, VALUE *argv, VALUE sm_self) { mat4_t *self = sm_unwrap_mat4(sm_self, NULL); size_t arr_index = 0; switch (argc) { case 0: { // Identity (handled in _new) break; } // Copy Mat4 or provided [Numeric..] case 1: { // Copy Mat4 if (SM_IS_A(argv[0], mat4)) { sm_unwrap_mat4(argv[0], *self); break; } // Copy Mat3 if (SM_IS_A(argv[0], mat3)) { mat3_to_mat4(*sm_unwrap_mat4(argv[0], NULL), *self); break; } // Build from Quaternion if (SM_IS_A(argv[0], quat)) { mat4_from_quat(*sm_unwrap_quat(argv[0], NULL), *self); break; } // Optional offset into array provided if (0) { case 2: arr_index = NUM2SIZET(argv[1]); } // Array of values if (SM_RB_IS_A(argv[0], rb_cArray)) { VALUE arrdata = argv[0]; const size_t arr_end = arr_index + 16; s_float_t *mat_elem = *self; for (; arr_index < arr_end; ++arr_index, ++mat_elem) { *mat_elem = rb_num2dbl(rb_ary_entry(arrdata, (long)arr_index)); } break; } rb_raise(rb_eArgError, "Expected either an array of Numerics or a Mat4"); break; } // Mat4(Vec4, Vec4, Vec4, Vec4) case 4: { size_t arg_index; s_float_t *mat_elem = *self; for (arg_index = 0; arg_index < 4; ++arg_index, mat_elem += 4) { if (!SM_IS_A(argv[arg_index], vec4) && !SM_IS_A(argv[arg_index], quat)) { rb_raise( rb_eArgError, "Argument %d must be a Vec4 or Quat when supplying four arguments to Mat4.initialize/set", (int)(arg_index + 1)); } sm_unwrap_vec4(argv[arg_index], mat_elem); } break; } // Mat4(Numeric m00 .. m16) case 16: { s_float_t *mat_elem = *self; VALUE *argv_p = argv; for (; argc; --argc, ++argv_p, ++mat_elem) { *mat_elem = (s_float_t)rb_num2dbl(*argv_p); } break; } default: { rb_raise(rb_eArgError, "Invalid arguments to Mat4.initialize"); break; } } // swtich (argc) return sm_self; } |
#set_column3(sm_index, sm_value) ⇒ Object
Sets the matrix’s column at the given index to the given vector.
call-seq:
set_column3(index, vec3) -> self
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 |
# File 'ext/snow-math/snow-math.c', line 4277 static VALUE sm_mat4_set_column3(VALUE sm_self, VALUE sm_index, VALUE sm_value) { const vec3_t *value; int index; mat4_t *self; if (!SM_IS_A(sm_value, vec3) && !SM_IS_A(sm_value, vec4) && !SM_IS_A(sm_value, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_value)); return Qnil; } self = sm_unwrap_mat4(sm_self, NULL); value = sm_unwrap_vec3(sm_value, NULL); index = NUM2INT(sm_index); if (index < 0 || index > 3) { rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index); return Qnil; } mat4_set_column3(index, *value, *self); return sm_self; } |
#set_column4(sm_index, sm_value) ⇒ Object
Sets the matrix’s column at the given index to the given vector.
call-seq:
set_column4(index, vec4) -> self
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 |
# File 'ext/snow-math/snow-math.c', line 4347 static VALUE sm_mat4_set_column4(VALUE sm_self, VALUE sm_index, VALUE sm_value) { const vec4_t *value; int index; mat4_t *self; if (!SM_IS_A(sm_value, vec4) && !SM_IS_A(sm_value, quat)) { rb_raise(rb_eTypeError, kSM_WANT_FOUR_FORMAT_LIT, rb_obj_classname(sm_value)); return Qnil; } self = sm_unwrap_mat4(sm_self, NULL); value = sm_unwrap_vec4(sm_value, NULL); index = NUM2INT(sm_index); if (index < 0 || index > 3) { rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index); return Qnil; } mat4_set_column4(index, *value, *self); return sm_self; } |
#set_row3(sm_index, sm_value) ⇒ Object
Sets the matrix’s row at the given index to the given vector.
call-seq:
set_row3(index, vec3) -> self
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 |
# File 'ext/snow-math/snow-math.c', line 4242 static VALUE sm_mat4_set_row3(VALUE sm_self, VALUE sm_index, VALUE sm_value) { const vec3_t *value; int index; mat4_t *self; if (!SM_IS_A(sm_value, vec3) && !SM_IS_A(sm_value, vec4) && !SM_IS_A(sm_value, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_value)); return Qnil; } self = sm_unwrap_mat4(sm_self, NULL); value = sm_unwrap_vec3(sm_value, NULL); index = NUM2INT(sm_index); if (index < 0 || index > 3) { rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index); return Qnil; } mat4_set_row3(index, *value, *self); return sm_self; } |
#set_row4(sm_index, sm_value) ⇒ Object
Sets the matrix’s row at the given index to the given vector.
call-seq:
set_row4(index, vec4) -> self
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 |
# File 'ext/snow-math/snow-math.c', line 4312 static VALUE sm_mat4_set_row4(VALUE sm_self, VALUE sm_index, VALUE sm_value) { const vec4_t *value; int index; mat4_t *self; if (!SM_IS_A(sm_value, vec4) && !SM_IS_A(sm_value, quat)) { rb_raise(rb_eTypeError, kSM_WANT_FOUR_FORMAT_LIT, rb_obj_classname(sm_value)); return Qnil; } self = sm_unwrap_mat4(sm_self, NULL); value = sm_unwrap_vec4(sm_value, NULL); index = NUM2INT(sm_index); if (index < 0 || index > 3) { rb_raise(rb_eRangeError, "Index %d is out of range, must be (0 .. 3)", index); return Qnil; } mat4_set_row4(index, *value, *self); return sm_self; } |
#size ⇒ Object
Returns the length in bytes of the Mat4. When compiled to use doubles as the base type, this is always 128. Otherwise, when compiled to use floats, it’s always 64.
call-seq: size -> fixnum
3157 3158 3159 3160 |
# File 'ext/snow-math/snow-math.c', line 3157 static VALUE sm_mat4_size (VALUE self) { return SIZET2NUM(sizeof(mat4_t)); } |
#store ⇒ Object Also known as: []=
Sets the Mat4’s component at the index to the value.
call-seq: store(index, value) -> value
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 |
# File 'ext/snow-math/snow-math.c', line 3135 static VALUE sm_mat4_store (VALUE sm_self, VALUE sm_index, VALUE sm_value) { static const int max_index = sizeof(mat4_t) / sizeof(s_float_t); mat4_t *self = sm_unwrap_mat4(sm_self, NULL); int index = NUM2INT(sm_index); if (index < 0 || index >= max_index) { rb_raise(rb_eRangeError, "Index %d is out of bounds, must be from 0 through %d", index, max_index - 1); } self[0][index] = (s_float_t)rb_num2dbl(sm_value); return sm_value; } |
#to_mat3(*args) ⇒ Object
Converts the Mat4 to a Mat3.
call-seq:
to_mat3(output = nil) -> output or new mat3
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 |
# File 'ext/snow-math/snow-math.c', line 3215 static VALUE sm_mat4_to_mat3(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out; mat4_t *self; rb_scan_args(argc, argv, "01", &sm_out); self = sm_unwrap_mat4(sm_self, NULL); if (argc == 1) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ SM_RAISE_IF_NOT_TYPE(sm_out, mat3); mat3_t *output = sm_unwrap_mat3(sm_out, NULL); mat4_to_mat3 (*self, *output); }} else if (argc == 0) { SM_LABEL(skip_output): { mat3_t output; mat4_to_mat3 (*self, output); sm_out = sm_wrap_mat3(output, s_sm_mat4_klass); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to to_mat3"); } return sm_out; } |
#to_s ⇒ Object
Returns a string representation of self.
Mat4[].to_s # => "{ 1.0, 0.0, 0.0, 0.0,\n
# 0.0, 1.0, 0.0, 0.0,\n"
# 0.0, 0.0, 1.0, 0.0,\n"
# 0.0, 0.0, 0.0, 1.0 }"
call-seq:
to_s -> string
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 |
# File 'ext/snow-math/snow-math.c', line 3925 static VALUE sm_mat4_to_s(VALUE self) { const s_float_t *v; v = (const s_float_t *)*sm_unwrap_mat4(self, NULL); return rb_sprintf( "{ " "%f, %f, %f, %f" ",\n " "%f, %f, %f, %f" ",\n " "%f, %f, %f, %f" ",\n " "%f, %f, %f, %f" " }", v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7], v[8], v[9], v[10], v[11], v[12], v[13], v[14], v[15]); } |
#transform_vec3(*args) ⇒ Object
Transforms a Vec3 using self and returns the resulting vector.
call-seq:
transform_vec3(vec3, output = nil) -> output or new vec3
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 |
# File 'ext/snow-math/snow-math.c', line 3431 static VALUE sm_mat4_transform_vec3(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_rhs; VALUE sm_out; mat4_t *self; vec3_t *rhs; rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out); self = sm_unwrap_mat4(sm_self, NULL); if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_rhs)); return Qnil; } rhs = sm_unwrap_vec3(sm_rhs, NULL); if (argc == 2) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) { rb_raise(rb_eTypeError, kSM_WANT_THREE_OR_FOUR_FORMAT_LIT, rb_obj_classname(sm_out)); return Qnil; } vec3_t *output = sm_unwrap_vec3(sm_out, NULL); mat4_transform_vec3(*self, *rhs, *output); }} else if (argc == 1) { SM_LABEL(skip_output): { vec3_t output; mat4_transform_vec3(*self, *rhs, output); sm_out = sm_wrap_vec3(output, rb_obj_class(sm_rhs)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to vec3"); } return sm_out; } |
#transform_vec3!(rhs) ⇒ Object
Calls #transform_vec3(rhs, rhs)
call-seq: transform_vec3!(rhs) -> rhs
78 79 80 |
# File 'lib/snow-math/mat4.rb', line 78 def transform_vec3!(rhs) transform_vec3 rhs, rhs end |
#translate(*args) ⇒ Object
Translates this matrix by X, Y, and Z (or a Vec3’s X, Y, and Z components) and returns the result. Essentially the same as multiplying this matrix by a translation matrix, but slightly more convenient.
call-seq:
translate(x, y, z, output = nil) -> output or new mat4
translate(vec3, output = nil) -> output or new mat4
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 |
# File 'ext/snow-math/snow-math.c', line 3696 static VALUE sm_mat4_translate(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out = Qnil; mat4_t *self = sm_unwrap_mat4(sm_self, NULL); vec3_t xyz; SM_LABEL(argc_reconfig): switch (argc) { case 2: case 4: { sm_out = argv[--argc]; if (RTEST(sm_out)) { SM_RAISE_IF_NOT_TYPE(sm_out, mat4); } goto SM_LABEL(argc_reconfig); } case 1: { sm_unwrap_vec3(argv[0], xyz); goto SM_LABEL(get_output); } case 3: { xyz[0] = rb_num2dbl(argv[0]); xyz[1] = rb_num2dbl(argv[1]); xyz[2] = rb_num2dbl(argv[2]); SM_LABEL(get_output): if (RTEST(sm_out)) { mat4_t *out = sm_unwrap_mat4(sm_out, NULL); mat4_translate(xyz[0], xyz[1], xyz[2], *self, *out); } else { mat4_t out; mat4_translate(xyz[0], xyz[1], xyz[2], *self, out); sm_out = sm_wrap_mat4(out, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); } } } return sm_out; } |
#translate!(*args) ⇒ Object
Calls #translate(*args, self)
call-seq: translate!(vec3) -> self call-seq: translate!(x, y, z) -> self
138 139 140 |
# File 'lib/snow-math/mat4.rb', line 138 def translate!(*args) translate *args, self end |
#transpose(*args) ⇒ Object Also known as: ~
Transposes this matrix and returns the result.
call-seq:
transpose(output = nil) -> output or new mat4
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 |
# File 'ext/snow-math/snow-math.c', line 3248 static VALUE sm_mat4_transpose(int argc, VALUE *argv, VALUE sm_self) { VALUE sm_out; mat4_t *self; rb_scan_args(argc, argv, "01", &sm_out); self = sm_unwrap_mat4(sm_self, NULL); if (argc == 1) { if (!RTEST(sm_out)) { goto SM_LABEL(skip_output); }{ SM_RAISE_IF_NOT_TYPE(sm_out, mat4); mat4_t *output = sm_unwrap_mat4(sm_out, NULL); mat4_transpose (*self, *output); }} else if (argc == 0) { SM_LABEL(skip_output): { mat4_t output; mat4_transpose (*self, output); sm_out = sm_wrap_mat4(output, rb_obj_class(sm_self)); rb_obj_call_init(sm_out, 0, 0); }} else { rb_raise(rb_eArgError, "Invalid number of arguments to transpose"); } return sm_out; } |
#transpose! ⇒ Object
Calls #transpose(self)
call-seq: transpose! -> self
43 44 45 |
# File 'lib/snow-math/mat4.rb', line 43 def transpose! transpose self end |