Class: SentinelRb::Client::OpenAI
- Defined in:
- lib/sentinel_rb/client/openai.rb
Overview
OpenAI client implementation for LLM interactions
Instance Method Summary collapse
-
#analyze_content(prompt) ⇒ Object
Analyze content for relevance using LLM.
-
#fact_check(statement) ⇒ Object
Basic fact-checking implementation.
-
#initialize(config) ⇒ OpenAI
constructor
A new instance of OpenAI.
-
#similarity(text1, text2) ⇒ Object
Calculate semantic similarity between two texts using embeddings.
Constructor Details
#initialize(config) ⇒ OpenAI
Returns a new instance of OpenAI.
10 11 12 13 14 15 16 17 |
# File 'lib/sentinel_rb/client/openai.rb', line 10 def initialize(config) super @client = ::OpenAI::Client.new( access_token: ENV[config.api_key_env] || ENV["OPENAI_API_KEY"], log_errors: config["log_level"] == "debug" ) @model = config.model end |
Instance Method Details
#analyze_content(prompt) ⇒ Object
Analyze content for relevance using LLM
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# File 'lib/sentinel_rb/client/openai.rb', line 32 def analyze_content(prompt) response = @client.chat( parameters: { model: @model, messages: [ { role: "system", content: "You are a prompt quality analyzer. Rate the relevance and focus of the given prompt on a scale of 0.0 to 1.0, where 1.0 means highly relevant and focused, and 0.0 means completely irrelevant or unfocused. Respond with just the numeric score." }, { role: "user", content: "Analyze this prompt for relevance and focus:\n\n#{prompt}" } ], temperature: 0.1, max_tokens: 10 } ) pp response if @config["log_level"] == "debug" score_text = response.dig("choices", 0, "message", "content").to_s.strip score = extract_score(score_text) { relevance_score: score, raw_response: score_text } rescue StandardError => e puts "Warning: Content analysis failed: #{e.message}" if @config["log_level"] == "debug" { relevance_score: 0.5, raw_response: "Analysis failed" } end |
#fact_check(statement) ⇒ Object
Basic fact-checking implementation
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
# File 'lib/sentinel_rb/client/openai.rb', line 65 def fact_check(statement) response = @client.chat( parameters: { model: @model, messages: [ { role: "system", content: "You are a fact-checker. Evaluate the accuracy of the given statement. Respond with 'TRUE' if accurate, 'FALSE' if inaccurate, or 'UNKNOWN' if uncertain. Then provide a confidence score from 0.0 to 1.0." }, { role: "user", content: "Fact-check this statement: #{statement}" } ], temperature: 0.1, max_tokens: 50 } ) result = response.dig("choices", 0, "message", "content").to_s.strip parse_fact_check_result(result) rescue StandardError => e puts "Warning: Fact-checking failed: #{e.message}" if @config["log_level"] == "debug" { accurate: true, confidence: 0.5, reason: "Fact-checking unavailable" } end |
#similarity(text1, text2) ⇒ Object
Calculate semantic similarity between two texts using embeddings
20 21 22 23 24 25 26 27 28 29 |
# File 'lib/sentinel_rb/client/openai.rb', line 20 def similarity(text1, text2) = (text1) = (text2) cosine_similarity(, ) rescue StandardError => e # Fallback to basic text comparison if embeddings fail puts "Warning: Embeddings failed, using fallback similarity: #{e.message}" if @config["log_level"] == "debug" fallback_similarity(text1, text2) end |