Class: Secryst::MultiHeadAttentionForward
- Inherits:
-
Torch::NN::F
- Object
- Torch::NN::F
- Secryst::MultiHeadAttentionForward
- Defined in:
- lib/secryst/multi_head_attention_forward.rb
Class Method Summary collapse
-
.multi_head_attention_forward(query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training: true, key_padding_mask: nil, need_weights: true, attn_mask: nil, use_separate_proj_weight: false, q_proj_weight: nil, k_proj_weight: nil, v_proj_weight: nil, static_k: nil, static_v: nil) ⇒ Object
Args: query, key, value: map a query and a set of key-value pairs to an output.
Class Method Details
.multi_head_attention_forward(query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training: true, key_padding_mask: nil, need_weights: true, attn_mask: nil, use_separate_proj_weight: false, q_proj_weight: nil, k_proj_weight: nil, v_proj_weight: nil, static_k: nil, static_v: nil) ⇒ Object
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
embed_dim_to_check: total dimension of the model.
num_heads: parallel attention heads.
in_proj_weight, in_proj_bias: input projection weight and bias.
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
dropout_p: probability of an element to be zeroed.
out_proj_weight, out_proj_bias: the output projection weight and bias.
training: apply dropout if is ``true``.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. This is a binary mask. When the value is true,
the corresponding value on the attention layer will be filled with -inf.
need_weights: output attn_output_weights.
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
use_separate_proj_weight: the function accept the proj. weights for query, key,
and value in different forms. If false, in_proj_weight will be used, which is
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
static_k, static_v: static key and value used for attention operators.
Shape:
Inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
will be unchanged. If a BoolTensor is provided, the positions with the
value of ``true`` will be ignored while the position with the value of ``false`` will be unchanged.
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``true``
are not allowed to attend while ``false`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
Outputs:
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
L is the target sequence length, S is the source sequence length.
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# File 'lib/secryst/multi_head_attention_forward.rb', line 54 def self.multi_head_attention_forward(query, key, value, , num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training: true, key_padding_mask: nil, need_weights: true, attn_mask: nil, use_separate_proj_weight: false, q_proj_weight: nil, k_proj_weight: nil, v_proj_weight: nil, static_k: nil, static_v: nil) tgt_len, bsz, = query.size() raise ArgumentError if != # allow MHA to have different sizes for the feature dimension raise ArgumentError if key.size(0) != value.size(0) or key.size(1) != value.size(1) head_dim = / num_heads raise ArgumentError, "embed_dim must be divisible by num_heads" if head_dim * num_heads != scaling = head_dim.to_f ** -0.5 if !use_separate_proj_weight if Torch.equal(query, key) && Torch.equal(key, value) # self-attention q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, -1) elsif Torch.equal(key, value) # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = _w = in_proj_weight.slice(0, _start, _end) # NOTE: inc-trspl if _b _b = _b.slice(0, _start, _end) end q = linear(query, _w, _b) if !key raise ArgumentError if value k = nil v = nil else # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = _end = nil _w = in_proj_weight.slice(0, _start) if _b _b = _b.slice(0, _start) end k, v = linear(key, _w, _b).chunk(2, -1) end else # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = _w = in_proj_weight.slice(0, _start, _end) if _b _b = _b.slice(0, _start, _end) end q = linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = _end = * 2 _w = in_proj_weight.slice(0, _start, _end) if _b _b = _b.slice(0, _start, _end) end k = linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = * 2 _end = nil _w = in_proj_weight.slice(0, _start) if _b _b = _b.slice(0, _start) end v = linear(value, _w, _b) end else q_proj_weight_non_opt = q_proj_weight len1, len2 = q_proj_weight_non_opt.size() raise ArgumentError if len1 != || len2 != query.size(-1) k_proj_weight_non_opt = k_proj_weight len1, len2 = k_proj_weight_non_opt.size() raise ArgumentError if len1 != || len2 != key.size(-1) v_proj_weight_non_opt = v_proj_weight len1, len2 = v_proj_weight_non_opt.size() raise ArgumentError if len1 != || len2 != value.size(-1) if in_proj_bias q = linear(query, q_proj_weight_non_opt, in_proj_bias.slice(0,0,)) k = linear(key, k_proj_weight_non_opt, in_proj_bias.slice(0, , * 2)) v = linear(value, v_proj_weight_non_opt, in_proj_bias.slice(0, * 2)) else q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) end end q = q * scaling if attn_mask raise ArgumentError, 'Only float, byte, and bool types are supported for attn_mask, not %s' % attn_mask.dtype unless attn_mask.dtype == Torch.float32 || attn_mask.dtype == Torch.float64 || attn_mask.dtype == Torch.float16 || attn_mask.dtype == Torch.uint8 || attn_mask.dtype == Torch.bool if attn_mask.dtype == Torch.uint8 puts "Byte tensor for attn_mask in NN::MultiheadAttention is deprecated. Use bool tensor instead." attn_mask = attn_mask.to(Torch.bool) end if attn_mask.dim() == 2 attn_mask = attn_mask.unsqueeze(0) raise ArgumentError, 'The size of the 2D attn_mask is not correct.' if attn_mask.size() != [1, query.size(0), key.size(0)] elsif attn_mask.dim() == 3 raise ArgumentError, 'The size of the 3D attn_mask is not correct.' if attn_mask.size() != [bsz * num_heads, query.size(0), key.size(0)] else raise ArgumentError, "attn_mask's dimension %s is not supported" % attn_mask.dim() end # attn_mask's dim is 3 now. end # convert ByteTensor key_padding_mask to bool if key_padding_mask && key_padding_mask.dtype == Torch.uint8 puts("Byte tensor for key_padding_mask in NN::MultiheadAttention is deprecated. Use bool tensor instead.") key_padding_mask = key_padding_mask.to(Torch.bool) end if bias_k && bias_v if !static_k && !static_v k = Torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = Torch.cat([v, bias_v.repeat(1, bsz, 1)]) attn_mask = pad(attn_mask, [0, 1]) if attn_mask key_padding_mask = pad(key_padding_mask, [0, 1]) if key_padding_mask else raise ArgumentError, "bias cannot be added to static key." unless !static_k raise ArgumentError, "bias cannot be added to static value." unless !static_v end else raise ArgumentError unless !bias_k raise ArgumentError unless !bias_v end q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if k v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v if static_k raise ArgumentError unless static_k.size(0) == bsz * num_heads raise ArgumentError unless static_k.size(2) == head_dim k = static_k end if static_v raise ArgumentError unless static_v.size(0) == bsz * num_heads raise ArgumentError unless static_v.size(2) == head_dim v = static_v end src_len = k.size(1) if key_padding_mask raise ArgumentError unless key_padding_mask.size(0) == bsz raise ArgumentError unless key_padding_mask.size(1) == src_len end if add_zero_attn src_len += 1 k_sizes = k.size() k_sizes[1] = 1 k = Torch.cat([k, Torch.zeros(k_sizes, dtype: k.dtype, device: k.device)], 1) v_sizes = v.size() v_sizes[1] = 1 v = Torch.cat([v, Torch.zeros(v_sizes, dtype: v.dtype, device: v.device)], 1) attn_mask = pad(attn_mask, [0, 1]) if attn_mask key_padding_mask = pad(key_padding_mask, [0, 1]) if key_padding_mask end attn_output_weights = Torch.bmm(q, k.transpose(1, 2)) raise ArgumentError unless attn_output_weights.size() == [bsz * num_heads, tgt_len, src_len] if attn_mask if attn_mask.dtype == Torch.bool attn_output_weights.masked_fill!(attn_mask, -1.0/0.0) else attn_output_weights += attn_mask end end if key_padding_mask attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), -1.0/0.0 ) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) end attn_output_weights = softmax( attn_output_weights, dim: -1) attn_output_weights = dropout(attn_output_weights, p: dropout_p, training: training) attn_output = Torch.bmm(attn_output_weights, v) raise ArgumentError unless attn_output.size() == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, ) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if need_weights # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(1) / num_heads else return attn_output, nil end end |