Method: Rumale::Ensemble::AdaBoostClassifier#initialize

Defined in:
lib/rumale/ensemble/ada_boost_classifier.rb

#initialize(n_estimators: 50, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ AdaBoostClassifier

Create a new classifier with AdaBoost.

Parameters:

  • n_estimators (Integer) (defaults to: 50)

    The numeber of decision trees for contructing random forest.

  • criterion (String) (defaults to: 'gini')

    The function to evalue spliting point. Supported criteria are ‘gini’ and ‘entropy’.

  • max_depth (Integer) (defaults to: nil)

    The maximum depth of the tree. If nil is given, decision tree grows without concern for depth.

  • max_leaf_nodes (Integer) (defaults to: nil)

    The maximum number of leaves on decision tree. If nil is given, number of leaves is not limited.

  • min_samples_leaf (Integer) (defaults to: 1)

    The minimum number of samples at a leaf node.

  • max_features (Integer) (defaults to: nil)

    The number of features to consider when searching optimal split point. If nil is given, split process considers all features.

  • random_seed (Integer) (defaults to: nil)

    The seed value using to initialize the random generator. It is used to randomly determine the order of features when deciding spliting point.



56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# File 'lib/rumale/ensemble/ada_boost_classifier.rb', line 56

def initialize(n_estimators: 50,
               criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
               max_features: nil, random_seed: nil)
  check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
                                    max_features: max_features, random_seed: random_seed)
  check_params_integer(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf)
  check_params_string(criterion: criterion)
  check_params_positive(n_estimators: n_estimators, max_depth: max_depth,
                        max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
                        max_features: max_features)
  @params = {}
  @params[:n_estimators] = n_estimators
  @params[:criterion] = criterion
  @params[:max_depth] = max_depth
  @params[:max_leaf_nodes] = max_leaf_nodes
  @params[:min_samples_leaf] = min_samples_leaf
  @params[:max_features] = max_features
  @params[:random_seed] = random_seed
  @params[:random_seed] ||= srand
  @estimators = nil
  @classes = nil
  @feature_importances = nil
  @rng = Random.new(@params[:random_seed])
end