Class: Rumale::Tree::DecisionTreeRegressor

Inherits:
BaseDecisionTree show all
Includes:
Base::Regressor
Defined in:
lib/rumale/tree/decision_tree_regressor.rb

Overview

DecisionTreeRegressor is a class that implements decision tree for regression.

Examples:

estimator =
  Rumale::Tree::DecisionTreeRegressor.new(
    max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
estimator.fit(training_samples, traininig_values)
results = estimator.predict(testing_samples)

Direct Known Subclasses

ExtraTreeRegressor

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Methods included from Base::Regressor

#score

Methods inherited from BaseDecisionTree

#apply

Constructor Details

#initialize(criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ DecisionTreeRegressor

Create a new regressor with decision tree algorithm.



50
51
52
53
54
55
56
57
58
59
60
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 50

def initialize(criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil,
               random_seed: nil)
  check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
                                    max_features: max_features, random_seed: random_seed)
  check_params_integer(min_samples_leaf: min_samples_leaf)
  check_params_string(criterion: criterion)
  check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
                        min_samples_leaf: min_samples_leaf, max_features: max_features)
  super
  @leaf_values = nil
end

Instance Attribute Details

#feature_importancesNumo::DFloat (readonly)

Return the importance for each feature.



24
25
26
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 24

def feature_importances
  @feature_importances
end

#leaf_valuesNumo::DFloat (readonly)

Return the values assigned each leaf.



36
37
38
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 36

def leaf_values
  @leaf_values
end

#rngRandom (readonly)

Return the random generator for random selection of feature index.



32
33
34
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 32

def rng
  @rng
end

#treeNode (readonly)

Return the learned tree.



28
29
30
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 28

def tree
  @tree
end

Instance Method Details

#fit(x, y) ⇒ DecisionTreeRegressor

Fit the model with given training data.



67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 67

def fit(x, y)
  check_sample_array(x)
  check_tvalue_array(y)
  check_sample_tvalue_size(x, y)
  n_samples, n_features = x.shape
  @params[:max_features] = n_features if @params[:max_features].nil?
  @params[:max_features] = [@params[:max_features], n_features].min
  @n_leaves = 0
  @leaf_values = []
  @sub_rng = @rng.dup
  build_tree(x, y)
  eval_importance(n_samples, n_features)
  @leaf_values = Numo::DFloat.cast(@leaf_values)
  @leaf_values = @leaf_values.flatten.dup if @leaf_values.shape[1] == 1
  self
end

#marshal_dumpHash

Dump marshal data.



95
96
97
98
99
100
101
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 95

def marshal_dump
  { params: @params,
    tree: @tree,
    feature_importances: @feature_importances,
    leaf_values: @leaf_values,
    rng: @rng }
end

#marshal_load(obj) ⇒ nil

Load marshal data.



105
106
107
108
109
110
111
112
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 105

def marshal_load(obj)
  @params = obj[:params]
  @tree = obj[:tree]
  @feature_importances = obj[:feature_importances]
  @leaf_values = obj[:leaf_values]
  @rng = obj[:rng]
  nil
end

#predict(x) ⇒ Numo::DFloat

Predict values for samples.



88
89
90
91
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 88

def predict(x)
  check_sample_array(x)
  @leaf_values.shape[1].nil? ? @leaf_values[apply(x)].dup : @leaf_values[apply(x), true].dup
end