Module: Rumale::PairwiseMetric
- Defined in:
- lib/rumale/pairwise_metric.rb
Overview
Module for calculating pairwise distances, similarities, and kernels.
Class Method Summary collapse
-
.euclidean_distance(x, y = nil) ⇒ Numo::DFloat
Calculate the pairwise euclidean distances between x and y.
-
.linear_kernel(x, y = nil) ⇒ Numo::DFloat
Calculate the linear kernel between x and y.
-
.manhattan_distance(x, y = nil) ⇒ Numo::DFloat
Calculate the pairwise manhattan distances between x and y.
-
.polynomial_kernel(x, y = nil, degree = 3, gamma = nil, coef = 1) ⇒ Numo::DFloat
Calculate the polynomial kernel between x and y.
-
.rbf_kernel(x, y = nil, gamma = nil) ⇒ Numo::DFloat
Calculate the rbf kernel between x and y.
-
.sigmoid_kernel(x, y = nil, gamma = nil, coef = 1) ⇒ Numo::DFloat
Calculate the sigmoid kernel between x and y.
-
.squared_error(x, y = nil) ⇒ Numo::DFloat
Calculate the pairwise squared errors between x and y.
Class Method Details
.euclidean_distance(x, y = nil) ⇒ Numo::DFloat
Calculate the pairwise euclidean distances between x and y.
14 15 16 17 18 19 |
# File 'lib/rumale/pairwise_metric.rb', line 14 def euclidean_distance(x, y = nil) y = x if y.nil? Rumale::Validation.check_sample_array(x) Rumale::Validation.check_sample_array(y) Numo::NMath.sqrt(squared_error(x, y).abs) end |
.linear_kernel(x, y = nil) ⇒ Numo::DFloat
Calculate the linear kernel between x and y.
76 77 78 79 80 81 |
# File 'lib/rumale/pairwise_metric.rb', line 76 def linear_kernel(x, y = nil) y = x if y.nil? Rumale::Validation.check_sample_array(x) Rumale::Validation.check_sample_array(y) x.dot(y.transpose) end |
.manhattan_distance(x, y = nil) ⇒ Numo::DFloat
Calculate the pairwise manhattan distances between x and y.
26 27 28 29 30 31 32 33 34 35 36 37 |
# File 'lib/rumale/pairwise_metric.rb', line 26 def manhattan_distance(x, y = nil) y = x if y.nil? Rumale::Validation.check_sample_array(x) Rumale::Validation.check_sample_array(y) n_samples_x = x.shape[0] n_samples_y = y.shape[0] distance_mat = Numo::DFloat.zeros(n_samples_x, n_samples_y) n_samples_x.times do |n| distance_mat[n, true] = (y - x[n, true]).abs.sum(axis: 1) end distance_mat end |
.polynomial_kernel(x, y = nil, degree = 3, gamma = nil, coef = 1) ⇒ Numo::DFloat
Calculate the polynomial kernel between x and y.
91 92 93 94 95 96 97 98 99 |
# File 'lib/rumale/pairwise_metric.rb', line 91 def polynomial_kernel(x, y = nil, degree = 3, gamma = nil, coef = 1) y = x if y.nil? gamma ||= 1.0 / x.shape[1] Rumale::Validation.check_sample_array(x) Rumale::Validation.check_sample_array(y) Rumale::Validation.check_params_float(gamma: gamma) Rumale::Validation.check_params_integer(degree: degree, coef: coef) (x.dot(y.transpose) * gamma + coef)**degree end |
.rbf_kernel(x, y = nil, gamma = nil) ⇒ Numo::DFloat
Calculate the rbf kernel between x and y.
62 63 64 65 66 67 68 69 |
# File 'lib/rumale/pairwise_metric.rb', line 62 def rbf_kernel(x, y = nil, gamma = nil) y = x if y.nil? gamma ||= 1.0 / x.shape[1] Rumale::Validation.check_sample_array(x) Rumale::Validation.check_sample_array(y) Rumale::Validation.check_params_float(gamma: gamma) Numo::NMath.exp(-gamma * squared_error(x, y).abs) end |
.sigmoid_kernel(x, y = nil, gamma = nil, coef = 1) ⇒ Numo::DFloat
Calculate the sigmoid kernel between x and y.
108 109 110 111 112 113 114 115 116 |
# File 'lib/rumale/pairwise_metric.rb', line 108 def sigmoid_kernel(x, y = nil, gamma = nil, coef = 1) y = x if y.nil? gamma ||= 1.0 / x.shape[1] Rumale::Validation.check_sample_array(x) Rumale::Validation.check_sample_array(y) Rumale::Validation.check_params_float(gamma: gamma) Rumale::Validation.check_params_integer(coef: coef) Numo::NMath.tanh(x.dot(y.transpose) * gamma + coef) end |
.squared_error(x, y = nil) ⇒ Numo::DFloat
Calculate the pairwise squared errors between x and y.
44 45 46 47 48 49 50 51 52 53 54 |
# File 'lib/rumale/pairwise_metric.rb', line 44 def squared_error(x, y = nil) y = x if y.nil? Rumale::Validation.check_sample_array(x) Rumale::Validation.check_sample_array(y) n_features = x.shape[1] one_vec = Numo::DFloat.ones(n_features).(1) sum_x_vec = (x**2).dot(one_vec) sum_y_vec = (y**2).dot(one_vec).transpose dot_xy_mat = x.dot(y.transpose) dot_xy_mat * -2.0 + sum_x_vec + sum_y_vec end |