Class: Rumale::Tree::DecisionTreeClassifier

Inherits:
BaseDecisionTree show all
Includes:
Base::Classifier
Defined in:
lib/rumale/tree/decision_tree_classifier.rb

Overview

DecisionTreeClassifier is a class that implements decision tree for classification.

Examples:

estimator =
  Rumale::Tree::DecisionTreeClassifier.new(
    criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
estimator.fit(training_samples, traininig_labels)
results = estimator.predict(testing_samples)

Direct Known Subclasses

ExtraTreeClassifier

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Methods included from Base::Classifier

#score

Methods inherited from BaseDecisionTree

#apply

Constructor Details

#initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ DecisionTreeClassifier

Create a new classifier with decision tree algorithm.



54
55
56
57
58
59
60
61
62
63
64
# File 'lib/rumale/tree/decision_tree_classifier.rb', line 54

def initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil,
               random_seed: nil)
  check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
                                    max_features: max_features, random_seed: random_seed)
  check_params_integer(min_samples_leaf: min_samples_leaf)
  check_params_string(criterion: criterion)
  check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
                        min_samples_leaf: min_samples_leaf, max_features: max_features)
  super
  @leaf_labels = nil
end

Instance Attribute Details

#classesNumo::Int32 (readonly)

Return the class labels.



24
25
26
# File 'lib/rumale/tree/decision_tree_classifier.rb', line 24

def classes
  @classes
end

#feature_importancesNumo::DFloat (readonly)

Return the importance for each feature.



28
29
30
# File 'lib/rumale/tree/decision_tree_classifier.rb', line 28

def feature_importances
  @feature_importances
end

#leaf_labelsNumo::Int32 (readonly)

Return the labels assigned each leaf.



40
41
42
# File 'lib/rumale/tree/decision_tree_classifier.rb', line 40

def leaf_labels
  @leaf_labels
end

#rngRandom (readonly)

Return the random generator for random selection of feature index.



36
37
38
# File 'lib/rumale/tree/decision_tree_classifier.rb', line 36

def rng
  @rng
end

#treeNode (readonly)

Return the learned tree.



32
33
34
# File 'lib/rumale/tree/decision_tree_classifier.rb', line 32

def tree
  @tree
end

Instance Method Details

#fit(x, y) ⇒ DecisionTreeClassifier

Fit the model with given training data.



71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# File 'lib/rumale/tree/decision_tree_classifier.rb', line 71

def fit(x, y)
  check_sample_array(x)
  check_label_array(y)
  check_sample_label_size(x, y)
  n_samples, n_features = x.shape
  @params[:max_features] = n_features if @params[:max_features].nil?
  @params[:max_features] = [@params[:max_features], n_features].min
  uniq_y = y.to_a.uniq.sort
  @classes = Numo::Int32.asarray(uniq_y)
  @n_leaves = 0
  @leaf_labels = []
  @sub_rng = @rng.dup
  build_tree(x, y.map { |v| uniq_y.index(v) })
  eval_importance(n_samples, n_features)
  @leaf_labels = Numo::Int32[*@leaf_labels]
  self
end

#marshal_dumpHash

Dump marshal data.



109
110
111
112
113
114
115
116
# File 'lib/rumale/tree/decision_tree_classifier.rb', line 109

def marshal_dump
  { params: @params,
    classes: @classes,
    tree: @tree,
    feature_importances: @feature_importances,
    leaf_labels: @leaf_labels,
    rng: @rng }
end

#marshal_load(obj) ⇒ nil

Load marshal data.



120
121
122
123
124
125
126
127
128
# File 'lib/rumale/tree/decision_tree_classifier.rb', line 120

def marshal_load(obj)
  @params = obj[:params]
  @classes = obj[:classes]
  @tree = obj[:tree]
  @feature_importances = obj[:feature_importances]
  @leaf_labels = obj[:leaf_labels]
  @rng = obj[:rng]
  nil
end

#predict(x) ⇒ Numo::Int32

Predict class labels for samples.



93
94
95
96
# File 'lib/rumale/tree/decision_tree_classifier.rb', line 93

def predict(x)
  check_sample_array(x)
  @leaf_labels[apply(x)].dup
end

#predict_proba(x) ⇒ Numo::DFloat

Predict probability for samples.



102
103
104
105
# File 'lib/rumale/tree/decision_tree_classifier.rb', line 102

def predict_proba(x)
  check_sample_array(x)
  Numo::DFloat[*(Array.new(x.shape[0]) { |n| predict_proba_at_node(@tree, x[n, true]) })]
end