Class: Rumale::Tree::ExtraTreeClassifier

Inherits:
DecisionTreeClassifier show all
Defined in:
lib/rumale/tree/extra_tree_classifier.rb

Overview

ExtraTreeClassifier is a class that implements extra randomized tree for classification.

Reference

    1. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Machine Learning, vol. 63 (1), pp. 3–42, 2006.

Examples:

estimator =
  Rumale::Tree::ExtraTreeClassifier.new(
    criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
estimator.fit(training_samples, traininig_labels)
results = estimator.predict(testing_samples)

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Methods included from Base::Classifier

#score

Methods inherited from BaseDecisionTree

#apply

Constructor Details

#initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ ExtraTreeClassifier

Create a new classifier with extra randomized tree algorithm.



51
52
53
54
55
56
57
58
59
60
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 51

def initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil,
               random_seed: nil)
  check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
                                    max_features: max_features, random_seed: random_seed)
  check_params_integer(min_samples_leaf: min_samples_leaf)
  check_params_string(criterion: criterion)
  check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
                        min_samples_leaf: min_samples_leaf, max_features: max_features)
  super
end

Instance Attribute Details

#classesNumo::Int32 (readonly)

Return the class labels.



21
22
23
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 21

def classes
  @classes
end

#feature_importancesNumo::DFloat (readonly)

Return the importance for each feature.



25
26
27
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 25

def feature_importances
  @feature_importances
end

#leaf_labelsNumo::Int32 (readonly)

Return the labels assigned each leaf.



37
38
39
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 37

def leaf_labels
  @leaf_labels
end

#rngRandom (readonly)

Return the random generator for random selection of feature index.



33
34
35
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 33

def rng
  @rng
end

#treeNode (readonly)

Return the learned tree.



29
30
31
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 29

def tree
  @tree
end

Instance Method Details

#fit(x, y) ⇒ ExtraTreeClassifier

Fit the model with given training data.



67
68
69
70
71
72
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 67

def fit(x, y)
  check_sample_array(x)
  check_label_array(y)
  check_sample_label_size(x, y)
  super
end

#marshal_dumpHash

Dump marshal data.



94
95
96
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 94

def marshal_dump
  super
end

#marshal_load(obj) ⇒ nil

Load marshal data.



100
101
102
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 100

def marshal_load(obj)
  super
end

#predict(x) ⇒ Numo::Int32

Predict class labels for samples.



78
79
80
81
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 78

def predict(x)
  check_sample_array(x)
  super
end

#predict_proba(x) ⇒ Numo::DFloat

Predict probability for samples.



87
88
89
90
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 87

def predict_proba(x)
  check_sample_array(x)
  super
end