Class: Rumale::LinearModel::LinearRegression

Inherits:
BaseLinearModel show all
Includes:
Base::Regressor
Defined in:
lib/rumale/linear_model/linear_regression.rb

Overview

LinearRegression is a class that implements ordinary least square linear regression with mini-batch stochastic gradient descent optimization.

Examples:

estimator =
  Rumale::LinearModel::LinearRegression.new(max_iter: 1000, batch_size: 20, random_seed: 1)
estimator.fit(training_samples, traininig_values)
results = estimator.predict(testing_samples)

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Methods included from Base::Regressor

#score

Constructor Details

#initialize(fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, n_jobs: nil, random_seed: nil) ⇒ LinearRegression

Create a new ordinary least square linear regressor.



45
46
47
48
49
50
51
52
53
54
# File 'lib/rumale/linear_model/linear_regression.rb', line 45

def initialize(fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil,
               n_jobs: nil, random_seed: nil)
  check_params_float(bias_scale: bias_scale)
  check_params_integer(max_iter: max_iter, batch_size: batch_size)
  check_params_boolean(fit_bias: fit_bias)
  check_params_type_or_nil(Integer, n_jobs: n_jobs, random_seed: random_seed)
  check_params_positive(max_iter: max_iter, batch_size: batch_size)
  keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h.merge(reg_param: 0.0)
  super(keywd_args)
end

Instance Attribute Details

#bias_termNumo::DFloat (readonly)

Return the bias term (a.k.a. intercept).



26
27
28
# File 'lib/rumale/linear_model/linear_regression.rb', line 26

def bias_term
  @bias_term
end

#rngRandom (readonly)

Return the random generator for random sampling.



30
31
32
# File 'lib/rumale/linear_model/linear_regression.rb', line 30

def rng
  @rng
end

#weight_vecNumo::DFloat (readonly)

Return the weight vector.



22
23
24
# File 'lib/rumale/linear_model/linear_regression.rb', line 22

def weight_vec
  @weight_vec
end

Instance Method Details

#fit(x, y) ⇒ LinearRegression

Fit the model with given training data.



61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# File 'lib/rumale/linear_model/linear_regression.rb', line 61

def fit(x, y)
  check_sample_array(x)
  check_tvalue_array(y)
  check_sample_tvalue_size(x, y)

  n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
  n_features = x.shape[1]

  if n_outputs > 1
    @weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
    @bias_term = Numo::DFloat.zeros(n_outputs)
    if enable_parallel?
      models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) }
      n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] }
    else
      n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
    end
  else
    @weight_vec, @bias_term = partial_fit(x, y)
  end

  self
end

#marshal_dumpHash

Dump marshal data.



96
97
98
99
100
101
# File 'lib/rumale/linear_model/linear_regression.rb', line 96

def marshal_dump
  { params: @params,
    weight_vec: @weight_vec,
    bias_term: @bias_term,
    rng: @rng }
end

#marshal_load(obj) ⇒ nil

Load marshal data.



105
106
107
108
109
110
111
# File 'lib/rumale/linear_model/linear_regression.rb', line 105

def marshal_load(obj)
  @params = obj[:params]
  @weight_vec = obj[:weight_vec]
  @bias_term = obj[:bias_term]
  @rng = obj[:rng]
  nil
end

#predict(x) ⇒ Numo::DFloat

Predict values for samples.



89
90
91
92
# File 'lib/rumale/linear_model/linear_regression.rb', line 89

def predict(x)
  check_sample_array(x)
  x.dot(@weight_vec.transpose) + @bias_term
end