Class: Rumale::PolynomialModel::FactorizationMachineRegressor

Inherits:
BaseFactorizationMachine show all
Includes:
Base::Regressor
Defined in:
lib/rumale/polynomial_model/factorization_machine_regressor.rb

Overview

FactorizationMachineRegressor is a class that implements Factorization Machine with stochastic gradient descent (SGD) optimization.

Reference

    1. Rendle, “Factorization Machines with libFM,” ACM TIST, vol. 3 (3), pp. 57:1–57:22, 2012.

    1. Rendle, “Factorization Machines,” Proc. ICDM’10, pp. 995–1000, 2010.

Examples:

estimator =
  Rumale::PolynomialModel::FactorizationMachineRegressor.new(
   n_factors: 10, reg_param_linear: 0.1, reg_param_factor: 0.1,
   max_iter: 5000, batch_size: 50, random_seed: 1)
estimator.fit(training_samples, traininig_values)
results = estimator.predict(testing_samples)

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Methods included from Base::Regressor

#score

Constructor Details

#initialize(n_factors: 2, reg_param_linear: 1.0, reg_param_factor: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, n_jobs: nil, random_seed: nil) ⇒ FactorizationMachineRegressor

Create a new regressor with Factorization Machine.



55
56
57
58
59
60
61
62
63
64
# File 'lib/rumale/polynomial_model/factorization_machine_regressor.rb', line 55

def initialize(n_factors: 2, reg_param_linear: 1.0, reg_param_factor: 1.0,
               max_iter: 1000, batch_size: 10, optimizer: nil, n_jobs: nil, random_seed: nil)
  check_params_float(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor)
  check_params_integer(n_factors: n_factors, max_iter: max_iter, batch_size: batch_size)
  check_params_type_or_nil(Integer, n_jobs: n_jobs, random_seed: random_seed)
  check_params_positive(n_factors: n_factors, reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
                        max_iter: max_iter, batch_size: batch_size)
  keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h.merge(loss: nil)
  super(keywd_args)
end

Instance Attribute Details

#bias_termNumo::DFloat (readonly)

Return the bias term for Factoriazation Machine.



35
36
37
# File 'lib/rumale/polynomial_model/factorization_machine_regressor.rb', line 35

def bias_term
  @bias_term
end

#factor_matNumo::DFloat (readonly)

Return the factor matrix for Factorization Machine.



27
28
29
# File 'lib/rumale/polynomial_model/factorization_machine_regressor.rb', line 27

def factor_mat
  @factor_mat
end

#rngRandom (readonly)

Return the random generator for random sampling.



39
40
41
# File 'lib/rumale/polynomial_model/factorization_machine_regressor.rb', line 39

def rng
  @rng
end

#weight_vecNumo::DFloat (readonly)

Return the weight vector for Factorization Machine.



31
32
33
# File 'lib/rumale/polynomial_model/factorization_machine_regressor.rb', line 31

def weight_vec
  @weight_vec
end

Instance Method Details

#fit(x, y) ⇒ FactorizationMachineRegressor

Fit the model with given training data.



71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# File 'lib/rumale/polynomial_model/factorization_machine_regressor.rb', line 71

def fit(x, y)
  check_sample_array(x)
  check_tvalue_array(y)
  check_sample_tvalue_size(x, y)

  n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
  _n_samples, n_features = x.shape

  if n_outputs > 1
    @factor_mat = Numo::DFloat.zeros(n_outputs, @params[:n_factors], n_features)
    @weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
    @bias_term = Numo::DFloat.zeros(n_outputs)
    if enable_parallel?
      models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) }
      n_outputs.times { |n| @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = models[n] }
    else
      n_outputs.times { |n| @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
    end
  else
    @factor_mat, @weight_vec, @bias_term = partial_fit(x, y)
  end

  self
end

#marshal_dumpHash

Dump marshal data.



113
114
115
116
117
118
119
# File 'lib/rumale/polynomial_model/factorization_machine_regressor.rb', line 113

def marshal_dump
  { params: @params,
    factor_mat: @factor_mat,
    weight_vec: @weight_vec,
    bias_term: @bias_term,
    rng: @rng }
end

#marshal_load(obj) ⇒ nil

Load marshal data.



123
124
125
126
127
128
129
130
# File 'lib/rumale/polynomial_model/factorization_machine_regressor.rb', line 123

def marshal_load(obj)
  @params = obj[:params]
  @factor_mat = obj[:factor_mat]
  @weight_vec = obj[:weight_vec]
  @bias_term = obj[:bias_term]
  @rng = obj[:rng]
  nil
end

#predict(x) ⇒ Numo::DFloat

Predict values for samples.



100
101
102
103
104
105
106
107
108
109
# File 'lib/rumale/polynomial_model/factorization_machine_regressor.rb', line 100

def predict(x)
  check_sample_array(x)
  linear_term = @bias_term + x.dot(@weight_vec.transpose)
  factor_term = if @weight_vec.shape[1].nil?
                  0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0)
                else
                  0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(1).transpose
                end
  linear_term + factor_term
end