Class: Rumale::PolynomialModel::FactorizationMachineClassifier

Inherits:
BaseFactorizationMachine show all
Includes:
Base::Classifier
Defined in:
lib/rumale/polynomial_model/factorization_machine_classifier.rb

Overview

FactorizationMachineClassifier is a class that implements Factorization Machine with stochastic gradient descent (SGD) optimization. For multiclass classification problem, it uses one-vs-the-rest strategy.

Reference

    1. Rendle, “Factorization Machines with libFM,” ACM TIST, vol. 3 (3), pp. 57:1–57:22, 2012.

    1. Rendle, “Factorization Machines,” Proc. ICDM’10, pp. 995–1000, 2010.

Examples:

estimator =
  Rumale::PolynomialModel::FactorizationMachineClassifier.new(
   n_factors: 10, loss: 'hinge', reg_param_linear: 0.001, reg_param_factor: 0.001,
   max_iter: 5000, batch_size: 50, random_seed: 1)
estimator.fit(training_samples, traininig_labels)
results = estimator.predict(testing_samples)

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Methods included from Base::Classifier

#score

Constructor Details

#initialize(n_factors: 2, loss: 'hinge', reg_param_linear: 1.0, reg_param_factor: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil) ⇒ FactorizationMachineClassifier

Create a new classifier with Factorization Machine.



58
59
60
61
62
63
64
65
66
67
68
69
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 58

def initialize(n_factors: 2, loss: 'hinge', reg_param_linear: 1.0, reg_param_factor: 1.0,
               max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
  check_params_float(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor)
  check_params_integer(n_factors: n_factors, max_iter: max_iter, batch_size: batch_size)
  check_params_string(loss: loss)
  check_params_type_or_nil(Integer, random_seed: random_seed)
  check_params_positive(n_factors: n_factors,
                        reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
                        max_iter: max_iter, batch_size: batch_size)
  super
  @classes = nil
end

Instance Attribute Details

#bias_termNumo::DFloat (readonly)

Return the bias term for Factoriazation Machine.



37
38
39
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 37

def bias_term
  @bias_term
end

#classesNumo::Int32 (readonly)

Return the class labels.



41
42
43
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 41

def classes
  @classes
end

#factor_matNumo::DFloat (readonly)

Return the factor matrix for Factorization Machine.



29
30
31
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 29

def factor_mat
  @factor_mat
end

#rngRandom (readonly)

Return the random generator for random sampling.



45
46
47
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 45

def rng
  @rng
end

#weight_vecNumo::DFloat (readonly)

Return the weight vector for Factorization Machine.



33
34
35
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 33

def weight_vec
  @weight_vec
end

Instance Method Details

#decision_function(x) ⇒ Numo::DFloat

Calculate confidence scores for samples.



106
107
108
109
110
111
112
113
114
115
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 106

def decision_function(x)
  check_sample_array(x)
  linear_term = @bias_term + x.dot(@weight_vec.transpose)
  factor_term = if @classes.size <= 2
                  0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0)
                else
                  0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(1).transpose
                end
  linear_term + factor_term
end

#fit(x, y) ⇒ FactorizationMachineClassifier

Fit the model with given training data.



76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 76

def fit(x, y)
  check_sample_array(x)
  check_label_array(y)
  check_sample_label_size(x, y)

  @classes = Numo::Int32[*y.to_a.uniq.sort]
  n_classes = @classes.size
  _n_samples, n_features = x.shape

  if n_classes > 2
    @factor_mat = Numo::DFloat.zeros(n_classes, @params[:n_factors], n_features)
    @weight_vec = Numo::DFloat.zeros(n_classes, n_features)
    @bias_term = Numo::DFloat.zeros(n_classes)
    n_classes.times do |n|
      bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
      @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y)
    end
  else
    negative_label = y.to_a.uniq.min
    bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
    @factor_mat, @weight_vec, @bias_term = partial_fit(x, bin_y)
  end

  self
end

#marshal_dumpHash

Dump marshal data.



148
149
150
151
152
153
154
155
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 148

def marshal_dump
  { params: @params,
    factor_mat: @factor_mat,
    weight_vec: @weight_vec,
    bias_term: @bias_term,
    classes: @classes,
    rng: @rng }
end

#marshal_load(obj) ⇒ nil

Load marshal data.



159
160
161
162
163
164
165
166
167
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 159

def marshal_load(obj)
  @params = obj[:params]
  @factor_mat = obj[:factor_mat]
  @weight_vec = obj[:weight_vec]
  @bias_term = obj[:bias_term]
  @classes = obj[:classes]
  @rng = obj[:rng]
  nil
end

#predict(x) ⇒ Numo::Int32

Predict class labels for samples.



121
122
123
124
125
126
127
128
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 121

def predict(x)
  check_sample_array(x)
  return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2

  n_samples, = x.shape
  decision_values = decision_function(x)
  Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
end

#predict_proba(x) ⇒ Numo::DFloat

Predict probability for samples.



134
135
136
137
138
139
140
141
142
143
144
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 134

def predict_proba(x)
  check_sample_array(x)
  proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0)
  return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2

  n_samples, = x.shape
  probs = Numo::DFloat.zeros(n_samples, 2)
  probs[true, 1] = proba
  probs[true, 0] = 1.0 - proba
  probs
end