Module: Rubystats::SpecialMath
- Includes:
- NumericalConstants
- Included in:
- BetaDistribution, BinomialDistribution, ExponentialDistribution, NormalDistribution, ProbabilityDistribution
- Defined in:
- lib/rubystats/modules.rb
Overview
Ruby port of SpecialMath.php from PHPMath, which is a port of JSci methods found in SpecialMath.java.
Ruby port by Bryan Donovan bryandonovan.com
- Author
-
Jaco van Kooten
- Author
-
Paul Meagher
- Author
-
Bryan Donovan
Constant Summary
Constants included from NumericalConstants
NumericalConstants::EPS, NumericalConstants::GAMMA, NumericalConstants::GAMMA_X_MAX_VALUE, NumericalConstants::GOLDEN_RATIO, NumericalConstants::LOG_GAMMA_X_MAX_VALUE, NumericalConstants::MAX_FLOAT, NumericalConstants::MAX_ITERATIONS, NumericalConstants::MAX_VALUE, NumericalConstants::PRECISION, NumericalConstants::SQRT2, NumericalConstants::SQRT2PI, NumericalConstants::TWO_PI, NumericalConstants::XMININ
Instance Attribute Summary collapse
-
#log_beta_cache_p ⇒ Object
readonly
Returns the value of attribute log_beta_cache_p.
-
#log_beta_cache_q ⇒ Object
readonly
Returns the value of attribute log_beta_cache_q.
-
#log_beta_cache_res ⇒ Object
readonly
Returns the value of attribute log_beta_cache_res.
-
#log_gamma_cache_res ⇒ Object
readonly
Returns the value of attribute log_gamma_cache_res.
-
#log_gamma_cache_x ⇒ Object
readonly
Returns the value of attribute log_gamma_cache_x.
Instance Method Summary collapse
-
#beta(p, q) ⇒ Object
Beta function.
-
#beta_fraction(x, p, q) ⇒ Object
Evaluates of continued fraction part of incomplete beta function.
-
#complementary_error(x) ⇒ Object
Complementary error function.
-
#error(x) ⇒ Object
Error function.
-
#gamma(_x) ⇒ Object
TODO test this.
-
#gamma_fraction(a, x) ⇒ Object
- Author
-
Jaco van Kooten.
-
#gamma_series_expansion(a, x) ⇒ Object
- Author
-
Jaco van Kooten.
-
#incomplete_beta(x, p, q) ⇒ Object
Incomplete Beta function.
-
#incomplete_gamma(a, x) ⇒ Object
Incomplete Gamma function.
- #log_beta(p, q) ⇒ Object
- #log_gamma(x) ⇒ Object
-
#orig_gamma(x) ⇒ Object
Gamma function.
Instance Attribute Details
#log_beta_cache_p ⇒ Object (readonly)
Returns the value of attribute log_beta_cache_p.
39 40 41 |
# File 'lib/rubystats/modules.rb', line 39 def log_beta_cache_p @log_beta_cache_p end |
#log_beta_cache_q ⇒ Object (readonly)
Returns the value of attribute log_beta_cache_q.
39 40 41 |
# File 'lib/rubystats/modules.rb', line 39 def log_beta_cache_q @log_beta_cache_q end |
#log_beta_cache_res ⇒ Object (readonly)
Returns the value of attribute log_beta_cache_res.
39 40 41 |
# File 'lib/rubystats/modules.rb', line 39 def log_beta_cache_res @log_beta_cache_res end |
#log_gamma_cache_res ⇒ Object (readonly)
Returns the value of attribute log_gamma_cache_res.
39 40 41 |
# File 'lib/rubystats/modules.rb', line 39 def log_gamma_cache_res @log_gamma_cache_res end |
#log_gamma_cache_x ⇒ Object (readonly)
Returns the value of attribute log_gamma_cache_x.
39 40 41 |
# File 'lib/rubystats/modules.rb', line 39 def log_gamma_cache_x @log_gamma_cache_x end |
Instance Method Details
#beta(p, q) ⇒ Object
Beta function.
- Author
-
Jaco van Kooten
430 431 432 433 434 435 436 |
# File 'lib/rubystats/modules.rb', line 430 def beta(p, q) if p <= 0.0 || q <= 0.0 || (p + q) > LOG_GAMMA_X_MAX_VALUE return 0.0 else return Math.exp(log_beta(p, q)) end end |
#beta_fraction(x, p, q) ⇒ Object
Evaluates of continued fraction part of incomplete beta function. Based on an idea from Numerical Recipes (W.H. Press et al, 1992).
- Author
-
Jaco van Kooten
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
# File 'lib/rubystats/modules.rb', line 468 def beta_fraction(x, p, q) c = 1.0 sum_pq = p + q p_plus = p + 1.0 p_minus = p - 1.0 h = 1.0 - sum_pq * x / p_plus if h.abs < XMININ h = XMININ end h = 1.0 / h frac = h m = 1 delta = 0.0 while (m <= MAX_ITERATIONS) && ((delta - 1.0).abs > PRECISION) m2 = 2 * m # even index for d d = m * (q - m) * x / ( (p_minus + m2) * (p + m2)) h = 1.0 + d * h if h.abs < XMININ h = XMININ end h = 1.0 / h c = 1.0 + d / c if c.abs < XMININ c = XMININ end frac *= (h * c) # odd index for d d = -(p + m) * (sum_pq + m) * x / ((p + m2) * (p_plus + m2)) h = 1.0 + d * h if h.abs < XMININ h = XMININ end h = 1.0 / h c = 1.0 + d / c if c.abs < XMININ c = XMININ end delta = h * c frac *= delta m += 1 end return frac end |
#complementary_error(x) ⇒ Object
Complementary error function. Based on C-code for the error function developed at Sun Microsystems. author Jaco van Kooten
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
# File 'lib/rubystats/modules.rb', line 693 def complementary_error(x) # Coefficients for approximation of erfc in [1.25,1/.35] eRa = [-9.86494403484714822705e-03, -6.93858572707181764372e-01, -1.05586262253232909814e01, -6.23753324503260060396e01, -1.62396669462573470355e02, -1.84605092906711035994e02, -8.12874355063065934246e01, -9.81432934416914548592e00 ] eSa = [ 1.96512716674392571292e01, 1.37657754143519042600e02, 4.34565877475229228821e02, 6.45387271733267880336e02, 4.29008140027567833386e02, 1.08635005541779435134e02, 6.57024977031928170135e00, -6.04244152148580987438e-02 ] # Coefficients for approximation to erfc in [1/.35,28] eRb = [-9.86494292470009928597e-03, -7.99283237680523006574e-01, -1.77579549177547519889e01, -1.60636384855821916062e02, -6.37566443368389627722e02, -1.02509513161107724954e03, -4.83519191608651397019e02 ] eSb = [ 3.03380607434824582924e01, 3.25792512996573918826e02, 1.53672958608443695994e03, 3.19985821950859553908e03, 2.55305040643316442583e03, 4.74528541206955367215e02, -2.24409524465858183362e01 ] abs_x = (if x >= 0.0 then x else -x end) if abs_x < 1.25 retval = 1.0 - error(abs_x) elsif abs_x > 28.0 retval = 0.0 # 1.25 < |x| < 28 else s = 1.0/(abs_x * abs_x) if abs_x < 2.8571428 r = eRa[0] + s * (eRa[1] + s * (eRa[2] + s * (eRa[3] + s * (eRa[4] + s * (eRa[5] + s * (eRa[6] + s * eRa[7]) ))))) s = 1.0 + s * (eSa[0] + s * (eSa[1] + s * (eSa[2] + s * (eSa[3] + s * (eSa[4] + s * (eSa[5] + s * (eSa[6] + s * eSa[7]))))))) else r = eRb[0] + s * (eRb[1] + s * (eRb[2] + s * (eRb[3] + s * (eRb[4] + s * (eRb[5] + s * eRb[6]))))) s = 1.0 + s * (eSb[0] + s * (eSb[1] + s * (eSb[2] + s * (eSb[3] + s * (eSb[4] + s * (eSb[5] + s * eSb[6])))))) end retval = Math.exp(-x * x - 0.5625 + r/s) / abs_x end return ( if x >= 0.0 then retval else 2.0 - retval end ) end |
#error(x) ⇒ Object
Error function. Based on C-code for the error function developed at Sun Microsystems.
- Author
-
Jaco van Kooten
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
# File 'lib/rubystats/modules.rb', line 623 def error(x) e_efx = 1.28379167095512586316e-01 ePp = [ 1.28379167095512558561e-01, -3.25042107247001499370e-01, -2.84817495755985104766e-02, -5.77027029648944159157e-03, -2.37630166566501626084e-05 ] eQq = [ 3.97917223959155352819e-01, 6.50222499887672944485e-02, 5.08130628187576562776e-03, 1.32494738004321644526e-04, -3.96022827877536812320e-06 ] # Coefficients for approximation to erf in [0.84375,1.25] ePa = [-2.36211856075265944077e-03, 4.14856118683748331666e-01, -3.72207876035701323847e-01, 3.18346619901161753674e-01, -1.10894694282396677476e-01, 3.54783043256182359371e-02, -2.16637559486879084300e-03 ] eQa = [ 1.06420880400844228286e-01, 5.40397917702171048937e-01, 7.18286544141962662868e-02, 1.26171219808761642112e-01, 1.36370839120290507362e-02, 1.19844998467991074170e-02 ] e_erx = 8.45062911510467529297e-01 abs_x = (if x >= 0.0 then x else -x end) # 0 < |x| < 0.84375 if abs_x < 0.84375 #|x| < 2**-28 if abs_x < 3.7252902984619141e-9 retval = abs_x + abs_x * e_efx else s = x * x p = ePp[0] + s * (ePp[1] + s * (ePp[2] + s * (ePp[3] + s * ePp[4]))) q = 1.0 + s * (eQq[0] + s * (eQq[1] + s * ( eQq[2] + s * (eQq[3] + s * eQq[4])))) retval = abs_x + abs_x * (p / q) end elsif abs_x < 1.25 s = abs_x - 1.0 p = ePa[0] + s * (ePa[1] + s * (ePa[2] + s * (ePa[3] + s * (ePa[4] + s * (ePa[5] + s * ePa[6]))))) q = 1.0 + s * (eQa[0] + s * (eQa[1] + s * (eQa[2] + s * (eQa[3] + s * (eQa[4] + s * eQa[5]))))) retval = e_erx + p / q elsif abs_x >= 6.0 retval = 1.0 else retval = 1.0 - complementary_error(abs_x) end return (if x >= 0.0 then retval else -retval end) end |
#gamma(_x) ⇒ Object
TODO test this
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# File 'lib/rubystats/modules.rb', line 209 def gamma(_x) return 0 if _x == 0.0 p0 = 1.000000000190015 p = {1 => 76.18009172947146, 2 => -86.50532032941677, 3 => 24.01409824083091, 4 => -1.231739572450155, 5 => 1.208650973866179e-3, 6 => -5.395239384953e-6} y = x = _x tmp = x + 5.5 tmp -= (x + 0.5) * Math.log(tmp) summer = p0 for j in (1 ... 6) y += 1 summer += (p[j] / y) end return Math.exp(0 - tmp + Math.log(2.5066282746310005 * summer / x)) end |
#gamma_fraction(a, x) ⇒ Object
- Author
-
Jaco van Kooten
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
# File 'lib/rubystats/modules.rb', line 399 def gamma_fraction(a, x) b = x + 1.0 - a c = 1.0 / XMININ d = 1.0 / b h = d del= 0.0 an = 0.0 for i in (1...MAX_ITERATIONS) if (del-1.0).abs > PRECISION an = -i * (i - a) b += 2.0 d = an * d + b c = b + an / c if c.abs < XMININ c = XMININ if d.abs < XMININ c = XMININ d = 1.0 / d del = d * c h *= del end end end return Math.exp(-x + a * Math.log(x) - log_gamma(a)) * h end end |
#gamma_series_expansion(a, x) ⇒ Object
- Author
-
Jaco van Kooten
383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
# File 'lib/rubystats/modules.rb', line 383 def gamma_series_expansion(a, x) ap = a del = 1.0 / a sum = del (1...MAX_ITERATIONS).each do ap += 1 del *= x / ap sum += del if del < sum * PRECISION return sum * Math.exp(-x + a * Math.log(x) - log_gamma(a)) end end return "Maximum iterations exceeded: please file a bug report." end |
#incomplete_beta(x, p, q) ⇒ Object
Incomplete Beta function.
- Author
-
Jaco van Kooten
- Author
-
Paul Meagher
The computation is based on formulas from Numerical Recipes,
Chapter 6.4 (W.H. Press et al, 1992).
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
# File 'lib/rubystats/modules.rb', line 446 def incomplete_beta(x, p, q) if x <= 0.0 return 0.0 elsif x >= 1.0 return 1.0 elsif (p <= 0.0) || (q <= 0.0) || (p + q) > LOG_GAMMA_X_MAX_VALUE return 0.0 else beta_gam = Math.exp( -log_beta(p, q) + p * Math.log(x) + q * Math.log(1.0 - x) ) if x < (p + 1.0) / (p + q + 2.0) return beta_gam * beta_fraction(x, p, q) / p else return 1.0 - (beta_gam * beta_fraction(1.0 - x, q, p) / q) end end end |
#incomplete_gamma(a, x) ⇒ Object
Incomplete Gamma function. The computation is based on approximations presented in Numerical Recipes, Chapter 6.2 (W.H. Press et al, 1992).
372 373 374 375 376 377 378 379 380 |
# File 'lib/rubystats/modules.rb', line 372 def incomplete_gamma(a, x) if x <= 0.0 || a <= 0.0 || a > LOG_GAMMA_X_MAX_VALUE return 0.0 elsif x < (a + 1.0) return gamma_series_expansion(a, x) else return 1.0-gamma_fraction(a, x) end end |
#log_beta(p, q) ⇒ Object
48 49 50 51 52 53 54 55 56 57 58 59 |
# File 'lib/rubystats/modules.rb', line 48 def log_beta(p,q) if p != log_beta_cache_p || q != log_beta_cache_q @log_beta_cache_p = p @log_beta_cache_q = q if (p <= 0.0) || (q <= 0.0) || (p + q) > LOG_GAMMA_X_MAX_VALUE @log_beta_cache_res = 0.0 else @log_beta_cache_res = log_gamma(p) + log_gamma(q) - log_gamma(p + q) end end return log_beta_cache_res end |
#log_gamma(x) ⇒ Object
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# File 'lib/rubystats/modules.rb', line 232 def log_gamma(x) lg_d1 = -0.5772156649015328605195174 lg_d2 = 0.4227843350984671393993777 lg_d4 = 1.791759469228055000094023 lg_p1 = [ 4.945235359296727046734888, 201.8112620856775083915565, 2290.838373831346393026739, 11319.67205903380828685045, 28557.24635671635335736389, 38484.96228443793359990269, 26377.48787624195437963534, 7225.813979700288197698961 ] lg_p2 = [ 4.974607845568932035012064, 542.4138599891070494101986, 15506.93864978364947665077, 184793.2904445632425417223, 1088204.76946882876749847, 3338152.967987029735917223, 5106661.678927352456275255, 3074109.054850539556250927 ] lg_p4 = [ 14745.02166059939948905062, 2426813.369486704502836312, 121475557.4045093227939592, 2663432449.630976949898078, 29403789566.34553899906876, 170266573776.5398868392998, 492612579337.743088758812, 560625185622.3951465078242 ] lg_q1 = [ 67.48212550303777196073036, 1113.332393857199323513008, 7738.757056935398733233834, 27639.87074403340708898585, 54993.10206226157329794414, 61611.22180066002127833352, 36351.27591501940507276287, 8785.536302431013170870835 ] lg_q2 = [ 183.0328399370592604055942, 7765.049321445005871323047, 133190.3827966074194402448, 1136705.821321969608938755, 5267964.117437946917577538, 13467014.54311101692290052, 17827365.30353274213975932, 9533095.591844353613395747 ] lg_q4 = [ 2690.530175870899333379843, 639388.5654300092398984238, 41355999.30241388052042842, 1120872109.61614794137657, 14886137286.78813811542398, 101680358627.2438228077304, 341747634550.7377132798597, 446315818741.9713286462081 ] lg_c = [ -0.001910444077728,8.4171387781295e-4, -5.952379913043012e-4, 7.93650793500350248e-4, -0.002777777777777681622553, 0.08333333333333333331554247, 0.0057083835261 ] # Rough estimate of the fourth root of logGamma_xBig lg_frtbig = 2.25e76 pnt68 = 0.6796875 if x == log_gamma_cache_x return log_gamma_cache_res end y = x if y > 0.0 && y <= LOG_GAMMA_X_MAX_VALUE if y <= EPS res = -Math.log(y) elsif y <= 1.5 # EPS .LT. X .LE. 1.5 if y < pnt68 corr = -Math.log(y) # xm1 is x-m-one, not x-m-L xm1 = y else corr = 0.0 xm1 = y - 1.0 end if y <= 0.5 || y >= pnt68 xden = 1.0 xnum = 0.0 for i in (0...8) xnum = xnum * xm1 + lg_p1[i] xden = xden * xm1 + lg_q1[i] end res = corr + xm1 * (lg_d1 + xm1 * (xnum / xden)) else xm2 = y - 1.0 xden = 1.0 xnum = 0.0 for i in (0 ... 8) xnum = xnum * xm2 + lg_p2[i] xden = xden * xm2 + lg_q2[i] end res = corr + xm2 * (lg_d2 + xm2 * (xnum / xden)) end elsif y <= 4.0 # 1.5 .LT. X .LE. 4.0 xm2 = y - 2.0 xden = 1.0 xnum = 0.0 for i in (0 ... 8) xnum = xnum * xm2 + lg_p2[i] xden = xden * xm2 + lg_q2[i] end res = xm2 * (lg_d2 + xm2 * (xnum / xden)) elsif y <= 12.0 # 4.0 .LT. X .LE. 12.0 xm4 = y - 4.0 xden = -1.0 xnum = 0.0 for i in (0 ... 8) xnum = xnum * xm4 + lg_p4[i] xden = xden * xm4 + lg_q4[i] end res = lg_d4 + xm4 * (xnum / xden) else # Evaluate for argument .GE. 12.0 res = 0.0 if y <= lg_frtbig res = lg_c[6] ysq = y * y for i in (0...6) res = res / ysq + lg_c[i] end end res = res/y corr = Math.log(y) res = res + Math.log(SQRT2PI) - 0.5 * corr res = res + y * (corr - 1.0) end else #return for bad arguments res = MAX_VALUE end # final adjustments and return @log_gamma_cache_x = x @log_gamma_cache_res = res return res end |
#orig_gamma(x) ⇒ Object
Gamma function. Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz<BR> Applied Mathematics Division<BR> Argonne National Laboratory<BR> Argonne, IL 60439<BR> <P> References: <OL> <LI>“An Overview of Software Development for Special Functions”, W. J. Cody, Lecture Notes in Mathematics, 506, Numerical Analysis Dundee, 1975, G. A. Watson (ed.), Springer Verlag, Berlin, 1976. <LI>Computer Approximations, Hart, Et. Al., Wiley and sons, New York, 1968. </OL></P><P> From the original documentation: </P><P> This routine calculates the Gamma function for a real argument X. Computation is based on an algorithm outlined in reference 1. The program uses rational functions that approximate the Gamma function to at least 20 significant decimal digits. Coefficients for the approximation over the interval (1,2) are unpublished. Those for the approximation for X .GE. 12 are from reference 2. The accuracy achieved depends on the arithmetic system, the compiler, the intrinsic functions, and proper selection of the machine-dependent constants. </P><P> Error returns:<BR> The program returns the value XINF for singularities or when overflow would occur. The computation is believed to be free of underflow and overflow. </P>
- Author
-
Jaco van Kooten
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# File 'lib/rubystats/modules.rb', line 90 def orig_gamma(x) # Gamma related constants g_p = [ -1.71618513886549492533811, 24.7656508055759199108314, -379.804256470945635097577, 629.331155312818442661052, 866.966202790413211295064, -31451.2729688483675254357, -36144.4134186911729807069, 66456.1438202405440627855 ] g_q = [-30.8402300119738975254353, 315.350626979604161529144, -1015.15636749021914166146, -3107.77167157231109440444, 22538.1184209801510330112, 4755.84627752788110767815, -134659.959864969306392456, -115132.259675553483497211 ] g_c = [-0.001910444077728, 8.4171387781295e-4, -5.952379913043012e-4, 7.93650793500350248e-4, -0.002777777777777681622553, 0.08333333333333333331554247, 0.0057083835261 ] fact = 1.0 i = 0 n = 0 y = x parity = false if y <= 0.0 # ---------------------------------------------------------------------- # Argument is negative # ---------------------------------------------------------------------- y = -(x) y1 = y.to_i res = y - y1 if res != 0.0 if y1 != (((y1*0.5).to_i) * 2.0) parity = true fact = -M_pi/sin(M_pi * res) y += 1 end else return MAX_VALUE end end # ---------------------------------------------------------------------- # Argument is positive # ---------------------------------------------------------------------- if y < EPS # ---------------------------------------------------------------------- # Argument .LT. EPS # ---------------------------------------------------------------------- if y >= XMININ res = 1.0 / y else return MAX_VALUE end elsif y < 12.0 y1 = y #end if y < 1.0 # ---------------------------------------------------------------------- # 0.0 .LT. argument .LT. 1.0 # ---------------------------------------------------------------------- z = y y += 1 else # ---------------------------------------------------------------------- # 1.0 .LT. argument .LT. 12.0, reduce argument if necessary # ---------------------------------------------------------------------- n = y.to_i - 1 y -= n.to_f z = y - 1.0 end # ---------------------------------------------------------------------- # Evaluate approximation for 1.0 .LT. argument .LT. 2.0 # ---------------------------------------------------------------------- xnum = 0.0 xden = 1.0 for i in (0...8) xnum = (xnum + g_p[i]) * z xden = xden * z + g_q[i] end res = xnum / xden + 1.0 if y1 < y # ---------------------------------------------------------------------- # Adjust result for case 0.0 .LT. argument .LT. 1.0 # ---------------------------------------------------------------------- res /= y1 elsif y1 > y # ---------------------------------------------------------------------- # Adjust result for case 2.0 .LT. argument .LT. 12.0 # ---------------------------------------------------------------------- for i in (0...n) res *= y y += 1 end end else # ---------------------------------------------------------------------- # Evaluate for argument .GE. 12.0 # ---------------------------------------------------------------------- if y <= GAMMA_X_MAX_VALUE ysq = y * y sum = g_c[6] for i in(0...6) sum = sum / ysq + g_c[i] sum = sum / y - y + log(SQRT2PI) sum += (y - 0.5) * log(y) res = Math.exp(sum) end else return MAX_VALUE end # ---------------------------------------------------------------------- # Final adjustments and return # ---------------------------------------------------------------------- if parity res = -res if fact != 1.0 res = fact / res return res end end end end |