Class: BigDecimal
- Inherits:
-
Numeric
- Object
- Numeric
- BigDecimal
- Defined in:
- lib/bigdecimal/util.rb,
ext/rubysl/bigdecimal/bigdecimal.c
Overview
BigDecimal provides arbitrary-precision floating point decimal arithmetic.
Copyright © 2002 by Shigeo Kobayashi <[email protected]>. You may distribute under the terms of either the GNU General Public License or the Artistic License, as specified in the README file of the BigDecimal distribution.
Documented by mathew <[email protected]>.
Introduction
Ruby provides built-in support for arbitrary precision integer arithmetic. For example:
42**13 -> 1265437718438866624512
BigDecimal provides similar support for very large or very accurate floating point numbers.
Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2. For example, try:
sum = 0
for i in (1..10000)
sum = sum + 0.0001
end
print sum
and contrast with the output from:
require 'bigdecimal'
sum = BigDecimal.new("0")
for i in (1..10000)
sum = sum + BigDecimal.new("0.0001")
end
print sum
Similarly:
(BigDecimal.new(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) -> true
(1.2 - 1.0) == 0.2 -> false
Special features of accurate decimal arithmetic
Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.
Infinity
BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.
BigDecimal.new(“1.0”) / BigDecimal.new(“0.0”) -> infinity
BigDecimal.new(“-1.0”) / BigDecimal.new(“0.0”) -> -infinity
You can represent infinite numbers to BigDecimal using the strings ‘Infinity’, ‘+Infinity’ and ‘-Infinity’ (case-sensitive)
Not a Number
When a computation results in an undefined value, the special value NaN (for ‘not a number’) is returned.
Example:
BigDecimal.new(“0.0”) / BigDecimal.new(“0.0”) -> NaN
You can also create undefined values. NaN is never considered to be the same as any other value, even NaN itself:
n = BigDecimal.new(‘NaN’)
n == 0.0 -> nil
n == n -> nil
Positive and negative zero
If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.
If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned. If the value is positive, a value of positive zero is returned.
BigDecimal.new(“1.0”) / BigDecimal.new(“-Infinity”) -> -0.0
BigDecimal.new(“1.0”) / BigDecimal.new(“Infinity”) -> 0.0
(See BigDecimal.mode for how to specify limits of precision.)
Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.
Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.
Constant Summary collapse
- BASE =
Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)
INT2FIX((S_INT)VpBaseVal())
- EXCEPTION_ALL =
Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.
0xff- EXCEPTION_NaN =
Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.
0x02- EXCEPTION_INFINITY =
Determines what happens when the result of a computation is infinity. See BigDecimal.mode.
0x01- EXCEPTION_UNDERFLOW =
Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.
0x04- EXCEPTION_OVERFLOW =
Determines what happens when the result of a computation is an underflow (a result too large to be represented). See BigDecimal.mode.
0x01- EXCEPTION_ZERODIVIDE =
Determines what happens when a division by zero is performed. See BigDecimal.mode.
0x01- ROUND_MODE =
Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.
0x100- ROUND_UP =
Indicates that values should be rounded away from zero. See BigDecimal.mode.
1- ROUND_DOWN =
Indicates that values should be rounded towards zero. See BigDecimal.mode.
2- ROUND_HALF_UP =
Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.
3- ROUND_HALF_DOWN =
Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.
4- ROUND_CEILING =
Round towards +infinity. See BigDecimal.mode.
5- ROUND_FLOOR =
Round towards -infinity. See BigDecimal.mode.
6- ROUND_HALF_EVEN =
Round towards the even neighbor. See BigDecimal.mode.
7- SIGN_NaN =
Indicates that a value is not a number. See BigDecimal.sign.
0- SIGN_POSITIVE_ZERO =
Indicates that a value is +0. See BigDecimal.sign.
1- SIGN_NEGATIVE_ZERO =
Indicates that a value is -0. See BigDecimal.sign.
-1
- SIGN_POSITIVE_FINITE =
Indicates that a value is positive and finite. See BigDecimal.sign.
2- SIGN_NEGATIVE_FINITE =
Indicates that a value is negative and finite. See BigDecimal.sign.
-2
- SIGN_POSITIVE_INFINITE =
Indicates that a value is positive and infinite. See BigDecimal.sign.
3- SIGN_NEGATIVE_INFINITE =
Indicates that a value is negative and infinite. See BigDecimal.sign.
-3
Class Method Summary collapse
-
._load(str) ⇒ Object
Internal method used to provide marshalling support.
-
.double_fig ⇒ Object
BigDecimal.double_fig.
- .induced_from(x) ⇒ Object
-
.limit(*args) ⇒ Object
BigDecimal.limit(digits).
-
.mode(*args) ⇒ Object
BigDecimal.mode(mode, value).
-
.new(*args) ⇒ Object
new(initial, digits).
-
.ver ⇒ Object
Returns the BigDecimal version number.
Instance Method Summary collapse
-
#% ⇒ Object
%: a%b = a - (a.to_f/b).floor * b.
-
#*(r) ⇒ Object
mult(value, digits).
-
#**(p) ⇒ Object
power(n).
-
#+(r) ⇒ Object
add(value, digits).
- #+@ ⇒ Object
-
#-(r) ⇒ Object
sub(value, digits).
- #-@ ⇒ Object
-
#/ ⇒ Object
For c = self/r: with round operation.
-
#<(r) ⇒ Object
a < b.
-
#<=(r) ⇒ Object
a <= b.
-
#<=>(r) ⇒ Object
The comparison operator.
-
#==(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#===(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#>(r) ⇒ Object
a > b.
-
#>=(r) ⇒ Object
a >= b.
- #_dump(*args) ⇒ Object
-
#abs ⇒ Object
Returns the absolute value.
- #add(b, n) ⇒ Object
-
#ceil(*args) ⇒ Object
ceil(n).
-
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion.
- #div(*args) ⇒ Object
-
#divmod(r) ⇒ Object
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers.
-
#eql?(r) ⇒ Boolean
Tests for value equality; returns true if the values are equal.
-
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
-
#finite? ⇒ Boolean
Returns True if the value is finite (not NaN or infinite).
-
#fix ⇒ Object
Return the integer part of the number.
-
#floor(*args) ⇒ Object
floor(n).
-
#frac ⇒ Object
Return the fractional part of the number.
- #hash ⇒ Object
-
#infinite? ⇒ Boolean
Returns True if the value is infinite.
-
#inspect ⇒ Object
Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #:.
-
#modulo ⇒ Object
%: a%b = a - (a.to_f/b).floor * b.
- #mult(b, n) ⇒ Object
-
#nan? ⇒ Boolean
Returns True if the value is Not a Number.
-
#nonzero? ⇒ Boolean
Returns True if the value is non-zero.
-
#power(p) ⇒ Object
power(n).
-
#precs ⇒ Object
precs.
-
#quo ⇒ Object
For c = self/r: with round operation.
-
#remainder ⇒ Object
remainder.
-
#round(*args) ⇒ Object
round(n,mode).
-
#sign ⇒ Object
Returns the sign of the value.
-
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
-
#sqrt(nFig) ⇒ Object
sqrt(n).
- #sub(b, n) ⇒ Object
-
#to_digits ⇒ Object
Converts a BigDecimal to a String of the form “nnnnnn.mmm”.
-
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number.
-
#to_i ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
-
#to_int ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
-
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
-
#to_s(*args) ⇒ Object
to_s(s).
-
#truncate(*args) ⇒ Object
truncate(n).
-
#zero? ⇒ Boolean
Returns True if the value is zero.
Class Method Details
._load(str) ⇒ Object
Internal method used to provide marshalling support. See the Marshal module.
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 327
static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
ENTER(2);
Real *pv;
unsigned char *pch;
unsigned char ch;
unsigned long m=0;
SafeStringValue(str);
pch = (unsigned char *)rb_str_ptr_readonly(str);
/* First get max prec */
while((*pch)!=(unsigned char)'\0' && (ch=*pch++)!=(unsigned char)':') {
if(!ISDIGIT(ch)) {
rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
}
m = m*10 + (unsigned long)(ch-'0');
}
if(m>VpBaseFig()) m -= VpBaseFig();
GUARD_OBJ(pv,VpNewRbClass(m,(char *)pch,self));
m /= VpBaseFig();
if(m && pv->MaxPrec>m) pv->MaxPrec = m+1;
return ToValue(pv);
}
|
.double_fig ⇒ Object
BigDecimal.double_fig
The BigDecimal.double_fig class method returns the number of digits a Float number is allowed to have. The result depends upon the CPU and OS in use.
257 258 259 260 261 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 257
static VALUE
BigDecimal_double_fig(VALUE self)
{
return INT2FIX(VpDblFig());
}
|
.induced_from(x) ⇒ Object
577 578 579 580 581 582 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 577
static VALUE
BigDecimal_induced_from(VALUE self, VALUE x)
{
Real *p = GetVpValue(x,1);
return p->obj;
}
|
.limit(*args) ⇒ Object
BigDecimal.limit(digits)
Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.
A limit of 0, the default, means no upper limit.
The limit specified by this method takes priority over any limit specified to instance methods such as ceil, floor, truncate, or round.
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1769
static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
VALUE nFig;
VALUE nCur = INT2NUM(VpGetPrecLimit());
if(rb_scan_args(argc,argv,"01",&nFig)==1) {
int nf;
if(nFig==Qnil) return nCur;
Check_Type(nFig, T_FIXNUM);
nf = FIX2INT(nFig);
if(nf<0) {
rb_raise(rb_eArgError, "argument must be positive");
}
VpSetPrecLimit(nf);
}
return nCur;
}
|
.mode(*args) ⇒ Object
BigDecimal.mode(mode, value)
Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.
Six values of the mode parameter control the handling of arithmetic exceptions:
BigDecimal::EXCEPTION_NaN BigDecimal::EXCEPTION_INFINITY BigDecimal::EXCEPTION_UNDERFLOW BigDecimal::EXCEPTION_OVERFLOW BigDecimal::EXCEPTION_ZERODIVIDE BigDecimal::EXCEPTION_ALL
For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:
- EXCEPTION_NaN
-
NaN
- EXCEPTION_INFINITY
-
+infinity or -infinity
- EXCEPTION_UNDERFLOW
-
0
- EXCEPTION_OVERFLOW
-
+infinity or -infinity
- EXCEPTION_ZERODIVIDE
-
+infinity or -infinity
One value of the mode parameter controls the rounding of numeric values: BigDecimal::ROUND_MODE. The values it can take are:
- ROUND_UP
-
round away from zero
- ROUND_DOWN
-
round towards zero (truncate)
- ROUND_HALF_UP
-
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default)
- ROUND_HALF_DOWN
-
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero.
- ROUND_HALF_EVEN
-
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker’s rounding)
- ROUND_CEILING
-
round towards positive infinity (ceil)
- ROUND_FLOOR
-
round towards negative infinity (floor)
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 390
static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
VALUE which;
VALUE val;
unsigned long f,fo;
if(rb_scan_args(argc,argv,"11",&which,&val)==1) val = Qnil;
Check_Type(which, T_FIXNUM);
f = (unsigned long)FIX2INT(which);
if(f&VP_EXCEPTION_ALL) {
/* Exception mode setting */
fo = VpGetException();
if(val==Qnil) return INT2FIX(fo);
if(val!=Qfalse && val!=Qtrue) {
rb_raise(rb_eTypeError, "second argument must be true or false");
return Qnil; /* Not reached */
}
if(f&VP_EXCEPTION_INFINITY) {
VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_INFINITY):
(fo&(~VP_EXCEPTION_INFINITY))));
}
if(f&VP_EXCEPTION_NaN) {
VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_NaN):
(fo&(~VP_EXCEPTION_NaN))));
}
fo = VpGetException();
return INT2FIX(fo);
}
if(VP_ROUND_MODE==f) {
/* Rounding mode setting */
fo = VpGetRoundMode();
if(val==Qnil) return INT2FIX(fo);
Check_Type(val, T_FIXNUM);
if(!VpIsRoundMode(FIX2INT(val))) {
rb_raise(rb_eTypeError, "invalid rounding mode");
return Qnil;
}
fo = VpSetRoundMode((unsigned long)FIX2INT(val));
return INT2FIX(fo);
}
rb_raise(rb_eTypeError, "first argument for BigDecimal#mode invalid");
return Qnil;
}
|
.new(*args) ⇒ Object
new(initial, digits)
Create a new BigDecimal object.
- initial
-
The initial value, as a String. Spaces are ignored, unrecognized characters terminate the value.
- digits
-
The number of significant digits, as a Fixnum. If omitted or 0, the number of significant digits is determined from the initial value.
The actual number of significant digits used in computation is usually larger than the specified number.
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1738
static VALUE
BigDecimal_new(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *pv;
S_LONG mf;
VALUE nFig;
VALUE iniValue;
if(rb_scan_args(argc,argv,"11",&iniValue,&nFig)==1) {
mf = 0;
} else {
mf = GetPositiveInt(nFig);
}
SafeStringValue(iniValue);
GUARD_OBJ(pv,VpNewRbClass(mf, rb_str_ptr_readonly(iniValue),self));
return ToValue(pv);
}
|
.ver ⇒ Object
Returns the BigDecimal version number.
Ruby 1.8.0 returns 1.0.0. Ruby 1.8.1 thru 1.8.3 return 1.0.1.
162 163 164 165 166 167 168 169 170 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 162
static VALUE
BigDecimal_version(VALUE self)
{
/*
* 1.0.0: Ruby 1.8.0
* 1.0.1: Ruby 1.8.1
*/
return rb_str_new2("1.0.1");
}
|
Instance Method Details
#% ⇒ Object
%: a%b = a - (a.to_f/b).floor * b
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1025
static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
ENTER(3);
VALUE obj;
Real *div=NULL, *mod=NULL;
obj = BigDecimal_DoDivmod(self,r,&div,&mod,rb_intern("%"));
if(obj!=(VALUE)0) return obj;
SAVE(div);SAVE(mod);
return ToValue(mod);
}
|
#*(r) ⇒ Object
mult(value, digits)
Multiply by the specified value.
e.g.
c = a.mult(b,n)
c = a * b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 886
static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
U_LONG mx;
GUARD_OBJ(a,GetVpValue(self,1));
b = GetVpValue(r,0);
if(!b) return DoSomeOne(self,r,rb_intern("*"));
SAVE(b);
mx = a->Prec + b->Prec;
GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
VpMult(c, a, b);
return ToValue(c);
}
|
#**(p) ⇒ Object
power(n)
Returns the value raised to the power of n. Note that n must be an Integer.
Also available as the operator **
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1683
static VALUE
BigDecimal_power(VALUE self, VALUE p)
{
ENTER(5);
Real *x, *y;
S_LONG mp, ma, n;
Check_Type(p, T_FIXNUM);
n = FIX2INT(p);
ma = n;
if(ma < 0) ma = -ma;
if(ma == 0) ma = 1;
GUARD_OBJ(x,GetVpValue(self,1));
if(VpIsDef(x)) {
mp = x->Prec *(VpBaseFig() + 1);
GUARD_OBJ(y,VpCreateRbObject(mp *(ma + 1), "0"));
} else {
GUARD_OBJ(y,VpCreateRbObject(1, "0"));
}
VpPower(y, x, n);
return ToValue(y);
}
|
#+(r) ⇒ Object
add(value, digits)
Add the specified value.
e.g.
c = a.add(b,n)
c = a + b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 661
static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
U_LONG mx;
GUARD_OBJ(a,GetVpValue(self,1));
b = GetVpValue(r,0);
if(!b) return DoSomeOne(self,r,rb_intern("+"));
SAVE(b);
if(VpIsNaN(b)) return b->obj;
if(VpIsNaN(a)) return a->obj;
mx = GetAddSubPrec(a,b);
if(mx==(-1L)) {
GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
VpAddSub(c, a, b, 1);
} else {
GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
if(!mx) {
VpSetInf(c,VpGetSign(a));
} else {
VpAddSub(c, a, b, 1);
}
}
return ToValue(c);
}
|
#+@ ⇒ Object
644 645 646 647 648 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 644
static VALUE
BigDecimal_uplus(VALUE self)
{
return self;
}
|
#-(r) ⇒ Object
sub(value, digits)
Subtract the specified value.
e.g.
c = a.sub(b,n)
c = a - b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 699
static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
U_LONG mx;
GUARD_OBJ(a,GetVpValue(self,1));
b = GetVpValue(r,0);
if(!b) return DoSomeOne(self,r,rb_intern("-"));
SAVE(b);
if(VpIsNaN(b)) return b->obj;
if(VpIsNaN(a)) return a->obj;
mx = GetAddSubPrec(a,b);
if(mx==(-1L)) {
GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
VpAddSub(c, a, b, -1);
} else {
GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
if(!mx) {
VpSetInf(c,VpGetSign(a));
} else {
VpAddSub(c, a, b, -1);
}
}
return ToValue(c);
}
|
#-@ ⇒ Object
864 865 866 867 868 869 870 871 872 873 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 864
static VALUE
BigDecimal_neg(VALUE self)
{
ENTER(5);
Real *c, *a;
GUARD_OBJ(a,GetVpValue(self,1));
GUARD_OBJ(c,VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0"));
VpAsgn(c, a, -1);
return ToValue(c);
}
|
#/ ⇒ Object
For c = self/r: with round operation
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 941
static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
ENTER(5);
Real *c=NULL, *res=NULL, *div = NULL;
r = BigDecimal_divide(&c, &res, &div, self, r);
if(r!=(VALUE)0) return r; /* coerced by other */
SAVE(c);SAVE(res);SAVE(div);
/* a/b = c + r/b */
/* c xxxxx
r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE
*/
/* Round */
if(VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
VpInternalRound(c,0,c->frac[c->Prec-1],(VpBaseVal()*res->frac[0])/div->frac[0]);
}
return ToValue(c);
}
|
#<(r) ⇒ Object
a < b
Returns true if a is less than b. Values may be coerced to perform the comparison (see ==, coerce).
822 823 824 825 826 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 822
static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '<');
}
|
#<=(r) ⇒ Object
a <= b
Returns true if a is less than or equal to b. Values may be coerced to perform the comparison (see ==, coerce).
834 835 836 837 838 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 834
static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'L');
}
|
#<=>(r) ⇒ Object
The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
789 790 791 792 793 794 795 796 797 798 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 789
static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
Real *a, *b;
GUARD_OBJ(a,GetVpValue(self,1));
GUARD_OBJ(b,GetVpValue(self,0));
if(VpIsNaN(a) || VpIsNaN(b)) return Qnil;
return BigDecimalCmp(self, r, '*');
}
|
#==(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal.new(‘1.0’) == 1.0 -> true
810 811 812 813 814 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 810
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#===(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal.new(‘1.0’) == 1.0 -> true
810 811 812 813 814 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 810
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#>(r) ⇒ Object
a > b
Returns true if a is greater than b. Values may be coerced to perform the comparison (see ==, coerce).
846 847 848 849 850 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 846
static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '>');
}
|
#>=(r) ⇒ Object
a >= b
Returns true if a is greater than or equal to b. Values may be coerced to perform the comparison (see ==, coerce)
858 859 860 861 862 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 858
static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'G');
}
|
#_dump(*args) ⇒ Object
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 305
static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *vp;
char *psz;
VALUE dummy;
volatile VALUE dump;
rb_scan_args(argc, argv, "01", &dummy);
GUARD_OBJ(vp,GetVpValue(self,1));
dump = rb_str_new(0,VpNumOfChars(vp,"E")+50);
psz = rb_str_ptr(dump);
sprintf(psz,"%lu:",VpMaxPrec(vp)*VpBaseFig());
VpToString(vp, psz+strlen(psz), 0, 0);
rb_str_resize(dump, strlen(psz));
return dump;
}
|
#abs ⇒ Object
Returns the absolute value.
BigDecimal(‘5’).abs -> 5
BigDecimal(‘-3’).abs -> 3
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1218
static VALUE
BigDecimal_abs(VALUE self)
{
ENTER(5);
Real *c, *a;
U_LONG mx;
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpAsgn(c, a, 1);
VpChangeSign(c,(S_INT)1);
return ToValue(c);
}
|
#add(b, n) ⇒ Object
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1161
static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
ENTER(2);
Real *cv;
U_LONG mx = (U_LONG)GetPositiveInt(n);
if(mx==0) return BigDecimal_add(self,b);
else {
U_LONG pl = VpSetPrecLimit(0);
VALUE c = BigDecimal_add(self,b);
VpSetPrecLimit(pl);
GUARD_OBJ(cv,GetVpValue(c,1));
VpLeftRound(cv,VpGetRoundMode(),mx);
return ToValue(cv);
}
}
|
#ceil(*args) ⇒ Object
ceil(n)
Return the smallest integer greater than or equal to the value, as a BigDecimal.
BigDecimal(‘3.14159’).ceil -> 4
BigDecimal(‘-9.1’).ceil -> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).ceil(3) -> 3.142
BigDecimal(‘13345.234’).ceil(-2) -> 13400.0
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1461
static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
U_LONG mx;
int iLoc;
VALUE vLoc;
U_LONG pl = VpSetPrecLimit(0);
if(rb_scan_args(argc,argv,"01",&vLoc)==0) {
iLoc = 0;
} else {
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
}
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c,a,VP_ROUND_CEIL,iLoc);
return ToValue(c);
}
|
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion. It is not enabled by default.
This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.
e.g. a = BigDecimal.new(“1.0”) b = a / 2.0 -> 0.5
Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.
629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 629
static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
ENTER(2);
VALUE obj;
Real *b;
if(TYPE(other) == T_FLOAT) {
obj = rb_assoc_new(other, BigDecimal_to_f(self));
} else {
GUARD_OBJ(b,GetVpValue(other,1));
obj = rb_assoc_new(b->obj, self);
}
return obj;
}
|
#div(*args) ⇒ Object
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1125
static VALUE
BigDecimal_div2(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
VALUE b,n;
int na = rb_scan_args(argc,argv,"11",&b,&n);
if(na==1) { /* div in Float sense */
VALUE obj;
Real *div=NULL;
Real *mod;
obj = BigDecimal_DoDivmod(self,b,&div,&mod,rb_intern("div"));
if(obj!=(VALUE)0) return obj;
return ToValue(div);
} else { /* div in BigDecimal sense */
U_LONG ix = (U_LONG)GetPositiveInt(n);
if(ix==0) return BigDecimal_div(self,b);
else {
Real *res=NULL;
Real *av=NULL, *bv=NULL, *cv=NULL;
U_LONG mx = (ix+VpBaseFig()*2);
U_LONG pl = VpSetPrecLimit(0);
GUARD_OBJ(cv,VpCreateRbObject(mx,"0"));
GUARD_OBJ(av,GetVpValue(self,1));
GUARD_OBJ(bv,GetVpValue(b,1));
mx = av->Prec + bv->Prec + 2;
if(mx <= cv->MaxPrec) mx = cv->MaxPrec+1;
GUARD_OBJ(res,VpCreateRbObject((mx * 2 + 2)*VpBaseFig(), "#0"));
VpDivd(cv,res,av,bv);
VpSetPrecLimit(pl);
VpLeftRound(cv,VpGetRoundMode(),ix);
return ToValue(cv);
}
}
}
|
#divmod(r) ⇒ Object
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.
For example:
require ‘bigdecimal’
a = BigDecimal.new(“42”) b = BigDecimal.new(“9”)
q,m = a.divmod(b)
c = q * b + m
a == c -> true
The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1111
static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
ENTER(5);
VALUE obj;
Real *div=NULL, *mod=NULL;
obj = BigDecimal_DoDivmod(self,r,&div,&mod,rb_intern("divmod"));
if(obj!=(VALUE)0) return obj;
SAVE(div);SAVE(mod);
obj = rb_assoc_new(ToValue(div), ToValue(mod));
return obj;
}
|
#eql?(r) ⇒ Boolean
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal.new(‘1.0’) == 1.0 -> true
810 811 812 813 814 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 810
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.
1635 1636 1637 1638 1639 1640 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1635
static VALUE
BigDecimal_exponent(VALUE self)
{
S_LONG e = VpExponent10(GetVpValue(self,1));
return INT2NUM(e);
}
|
#finite? ⇒ Boolean
Returns True if the value is finite (not NaN or infinite)
506 507 508 509 510 511 512 513 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 506
static VALUE
BigDecimal_IsFinite(VALUE self)
{
Real *p = GetVpValue(self,1);
if(VpIsNaN(p)) return Qfalse;
if(VpIsInf(p)) return Qfalse;
return Qtrue;
}
|
#fix ⇒ Object
Return the integer part of the number.
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1259
static VALUE
BigDecimal_fix(VALUE self)
{
ENTER(5);
Real *c, *a;
U_LONG mx;
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpActiveRound(c,a,VP_ROUND_DOWN,0); /* 0: round off */
return ToValue(c);
}
|
#floor(*args) ⇒ Object
floor(n)
Return the largest integer less than or equal to the value, as a BigDecimal.
BigDecimal(‘3.14159’).floor -> 3
BigDecimal(‘-9.1’).floor -> -10
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).floor(3) -> 3.141
BigDecimal(‘13345.234’).floor(-2) -> 13300.0
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1417
static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
U_LONG mx;
int iLoc;
VALUE vLoc;
U_LONG pl = VpSetPrecLimit(0);
if(rb_scan_args(argc,argv,"01",&vLoc)==0) {
iLoc = 0;
} else {
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
}
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c,a,VP_ROUND_FLOOR,iLoc);
return ToValue(c);
}
|
#frac ⇒ Object
Return the fractional part of the number.
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1384
static VALUE
BigDecimal_frac(VALUE self)
{
ENTER(5);
Real *c, *a;
U_LONG mx;
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpFrac(c, a);
return ToValue(c);
}
|
#hash ⇒ Object
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 285
static VALUE
BigDecimal_hash(VALUE self)
{
ENTER(1);
Real *p;
U_LONG hash,i;
GUARD_OBJ(p,GetVpValue(self,1));
hash = (U_LONG)p->sign;
/* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
if(hash==2) {
for(i = 0; i < p->Prec;i++) {
hash = 31 * hash + p->frac[i];
hash ^= p->frac[i];
}
hash += p->exponent;
}
return INT2FIX(hash);
}
|
#infinite? ⇒ Boolean
Returns True if the value is infinite
496 497 498 499 500 501 502 503 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 496
static VALUE
BigDecimal_IsInfinite(VALUE self)
{
Real *p = GetVpValue(self,1);
if(VpIsPosInf(p)) return INT2FIX(1);
if(VpIsNegInf(p)) return INT2FIX(-1);
return Qnil;
}
|
#inspect ⇒ Object
Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #:
BigDecimal.new(“1234.5678”).inspect -> “#<BigDecimal:b7ea1130,‘0.12345678E4’,8(12)>”
The first part is the address, the second is the value as a string, and the final part ss(mm) is the current number of significant digits and the maximum number of significant digits, respectively.
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1652
static VALUE
BigDecimal_inspect(VALUE self)
{
ENTER(5);
Real *vp;
volatile VALUE obj;
unsigned int nc;
char *psz, *tmp;
GUARD_OBJ(vp,GetVpValue(self,1));
nc = VpNumOfChars(vp,"E");
nc +=(nc + 9) / 10;
obj = rb_str_new(0, nc+256);
psz = rb_str_ptr(obj);
sprintf(psz,"#<BigDecimal:%lx,'",(long unsigned int)self);
tmp = psz + strlen(psz);
VpToString(vp, tmp, 10, 0);
tmp += strlen(tmp);
sprintf(tmp,"',%lu(%lu)>",VpPrec(vp)*VpBaseFig(),VpMaxPrec(vp)*VpBaseFig());
rb_str_resize(obj, strlen(psz));
return obj;
}
|
#modulo ⇒ Object
%: a%b = a - (a.to_f/b).floor * b
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1025
static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
ENTER(3);
VALUE obj;
Real *div=NULL, *mod=NULL;
obj = BigDecimal_DoDivmod(self,r,&div,&mod,rb_intern("%"));
if(obj!=(VALUE)0) return obj;
SAVE(div);SAVE(mod);
return ToValue(mod);
}
|
#mult(b, n) ⇒ Object
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1195
static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
ENTER(2);
Real *cv;
U_LONG mx = (U_LONG)GetPositiveInt(n);
if(mx==0) return BigDecimal_mult(self,b);
else {
U_LONG pl = VpSetPrecLimit(0);
VALUE c = BigDecimal_mult(self,b);
VpSetPrecLimit(pl);
GUARD_OBJ(cv,GetVpValue(c,1));
VpLeftRound(cv,VpGetRoundMode(),mx);
return ToValue(cv);
}
}
|
#nan? ⇒ Boolean
Returns True if the value is Not a Number
487 488 489 490 491 492 493 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 487
static VALUE
BigDecimal_IsNaN(VALUE self)
{
Real *p = GetVpValue(self,1);
if(VpIsNaN(p)) return Qtrue;
return Qfalse;
}
|
#nonzero? ⇒ Boolean
Returns True if the value is non-zero.
779 780 781 782 783 784 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 779
static VALUE
BigDecimal_nonzero(VALUE self)
{
Real *a = GetVpValue(self,1);
return VpIsZero(a) ? Qnil : self;
}
|
#power(p) ⇒ Object
power(n)
Returns the value raised to the power of n. Note that n must be an Integer.
Also available as the operator **
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1683
static VALUE
BigDecimal_power(VALUE self, VALUE p)
{
ENTER(5);
Real *x, *y;
S_LONG mp, ma, n;
Check_Type(p, T_FIXNUM);
n = FIX2INT(p);
ma = n;
if(ma < 0) ma = -ma;
if(ma == 0) ma = 1;
GUARD_OBJ(x,GetVpValue(self,1));
if(VpIsDef(x)) {
mp = x->Prec *(VpBaseFig() + 1);
GUARD_OBJ(y,VpCreateRbObject(mp *(ma + 1), "0"));
} else {
GUARD_OBJ(y,VpCreateRbObject(1, "0"));
}
VpPower(y, x, n);
return ToValue(y);
}
|
#precs ⇒ Object
precs
Returns an Array of two Integer values.
The first value is the current number of significant digits in the BigDecimal. The second value is the maximum number of significant digits for the BigDecimal.
272 273 274 275 276 277 278 279 280 281 282 283 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 272
static VALUE
BigDecimal_prec(VALUE self)
{
ENTER(1);
Real *p;
VALUE obj;
GUARD_OBJ(p,GetVpValue(self,1));
obj = rb_assoc_new(INT2NUM(p->Prec*VpBaseFig()),
INT2NUM(p->MaxPrec*VpBaseFig()));
return obj;
}
|
#quo ⇒ Object
For c = self/r: with round operation
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 941
static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
ENTER(5);
Real *c=NULL, *res=NULL, *div = NULL;
r = BigDecimal_divide(&c, &res, &div, self, r);
if(r!=(VALUE)0) return r; /* coerced by other */
SAVE(c);SAVE(res);SAVE(div);
/* a/b = c + r/b */
/* c xxxxx
r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE
*/
/* Round */
if(VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
VpInternalRound(c,0,c->frac[c->Prec-1],(VpBaseVal()*res->frac[0])/div->frac[0]);
}
return ToValue(c);
}
|
#remainder ⇒ Object
remainder
1082 1083 1084 1085 1086 1087 1088 1089 1090 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1082
static VALUE
BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
{
VALUE f;
Real *d,*rv=0;
f = BigDecimal_divremain(self,r,&d,&rv);
if(f!=(VALUE)0) return f;
return ToValue(rv);
}
|
#round(*args) ⇒ Object
round(n,mode)
Round to the nearest 1 (by default), returning the result as a BigDecimal.
BigDecimal(‘3.14159’).round -> 3
BigDecimal(‘8.7’).round -> 9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).round(3) -> 3.142
BigDecimal(‘13345.234’).round(-2) -> 13300.0
The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1295
static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc = 0;
U_LONG mx;
VALUE vLoc;
VALUE vRound;
U_LONG pl;
int sw = VpGetRoundMode();
int na = rb_scan_args(argc,argv,"02",&vLoc,&vRound);
switch(na) {
case 0:
iLoc = 0;
break;
case 1:
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
break;
case 2:
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
Check_Type(vRound, T_FIXNUM);
sw = FIX2INT(vRound);
if(!VpIsRoundMode(sw)) {
rb_raise(rb_eTypeError, "invalid rounding mode");
return Qnil;
}
break;
}
pl = VpSetPrecLimit(0);
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c,a,sw,iLoc);
return ToValue(c);
}
|
#sign ⇒ Object
Returns the sign of the value.
Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.
The specific value returned indicates the type and sign of the BigDecimal, as follows:
- BigDecimal::SIGN_NaN
-
value is Not a Number
- BigDecimal::SIGN_POSITIVE_ZERO
-
value is +0
- BigDecimal::SIGN_NEGATIVE_ZERO
-
value is -0
- BigDecimal::SIGN_POSITIVE_INFINITE
-
value is +infinity
- BigDecimal::SIGN_NEGATIVE_INFINITE
-
value is -infinity
- BigDecimal::SIGN_POSITIVE_FINITE
-
value is positive
- BigDecimal::SIGN_NEGATIVE_FINITE
-
value is negative
1804 1805 1806 1807 1808 1809 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1804
static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
int s = GetVpValue(self,1)->sign;
return INT2FIX(s);
}
|
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.
The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.
The third value is the base used for arithmetic (currently always 10) as an Integer.
The fourth value is an Integer exponent.
If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.
From these values, you can translate a BigDecimal to a float as follows:
sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1596
static VALUE
BigDecimal_split(VALUE self)
{
ENTER(5);
Real *vp;
VALUE obj,str;
S_LONG e;
S_LONG s;
char *psz1;
GUARD_OBJ(vp,GetVpValue(self,1));
str = rb_str_new(0, VpNumOfChars(vp,"E"));
psz1 = rb_str_ptr(str);
VpSzMantissa(vp,psz1);
s = 1;
if(psz1[0]=='-') {
int len = strlen(psz1+1);
memmove(psz1, psz1+1, len);
psz1[len] = '\0';
s = -1;
}
if(psz1[0]=='N') s=0; /* NaN */
e = VpExponent10(vp);
obj = rb_ary_new2(4);
rb_ary_push(obj, INT2FIX(s));
rb_ary_push(obj, str);
rb_str_resize(str, strlen(psz1));
rb_ary_push(obj, INT2FIX(10));
rb_ary_push(obj, INT2NUM(e));
return obj;
}
|
#sqrt(nFig) ⇒ Object
sqrt(n)
Returns the square root of the value.
If n is specified, returns at least that many significant digits.
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1240
static VALUE
BigDecimal_sqrt(VALUE self, VALUE nFig)
{
ENTER(5);
Real *c, *a;
S_INT mx, n;
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
n = GetPositiveInt(nFig) + VpDblFig() + 1;
if(mx <= n) mx = n;
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpSqrt(c, a);
return ToValue(c);
}
|
#sub(b, n) ⇒ Object
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1178
static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
ENTER(2);
Real *cv;
U_LONG mx = (U_LONG)GetPositiveInt(n);
if(mx==0) return BigDecimal_sub(self,b);
else {
U_LONG pl = VpSetPrecLimit(0);
VALUE c = BigDecimal_sub(self,b);
VpSetPrecLimit(pl);
GUARD_OBJ(cv,GetVpValue(c,1));
VpLeftRound(cv,VpGetRoundMode(),mx);
return ToValue(cv);
}
}
|
#to_digits ⇒ Object
Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.
33 34 35 36 37 38 39 40 41 |
# File 'lib/bigdecimal/util.rb', line 33 def to_digits if self.nan? || self.infinite? || self.zero? self.to_s else i = self.to_i.to_s s,f,y,z = self.frac.split i + "." + ("0"*(-z)) + f end end |
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 588
static VALUE
BigDecimal_to_f(VALUE self)
{
ENTER(1);
Real *p;
double d;
S_LONG e;
char *buf;
volatile VALUE str;
GUARD_OBJ(p,GetVpValue(self,1));
if(VpVtoD(&d, &e, p)!=1) return rb_float_new(d);
if (e > DBL_MAX_10_EXP) goto erange;
str = rb_str_new(0, VpNumOfChars(p,"E"));
buf = RSTRING_PTR(str);
VpToString(p, buf, 0, 0);
errno = 0;
d = strtod(buf, 0);
if(errno == ERANGE) {
erange:
VpException(VP_EXCEPTION_OVERFLOW,"BigDecimal to Float conversion",0);
if(d>0.0) d = VpGetDoublePosInf();
else d = VpGetDoubleNegInf();
}
return rb_float_new(d);
}
|
#to_i ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
If the BigNumber is infinity or NaN, returns nil.
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 519
static VALUE
BigDecimal_to_i(VALUE self)
{
ENTER(5);
int e,n,i,nf;
U_LONG v,b,j;
volatile VALUE str;
char *psz,*pch;
Real *p;
GUARD_OBJ(p,GetVpValue(self,1));
/* Infinity or NaN not converted. */
if(VpIsNaN(p)) {
VpException(VP_EXCEPTION_NaN,"Computation results to 'NaN'(Not a Number)",1);
return Qnil; /* not reached */
} else if(VpIsPosInf(p)) {
VpException(VP_EXCEPTION_INFINITY,"Computation results to 'Infinity'",1);
return Qnil; /* not reached */
} else if(VpIsNegInf(p)) {
VpException(VP_EXCEPTION_INFINITY,"Computation results to '-Infinity'",1);
return Qnil; /* not reached */
}
e = VpExponent10(p);
if(e<=0) return INT2FIX(0);
nf = VpBaseFig();
if(e<=nf) {
e = VpGetSign(p)*p->frac[0];
return INT2FIX(e);
}
str = rb_str_new(0, e+nf+2);
psz = rb_str_ptr_readonly(str);
n = (e+nf-1)/nf;
pch = psz;
if(VpGetSign(p)<0) *pch++ = '-';
for(i=0;i<n;++i) {
b = VpBaseVal()/10;
if(i>=(int)p->Prec) {
while(b) {
*pch++ = '0';
b /= 10;
}
continue;
}
v = p->frac[i];
while(b) {
j = v/b;
*pch++ = (char)(j + '0');
v -= j*b;
b /= 10;
}
}
*pch++ = 0;
return rb_cstr2inum(psz,10);
}
|
#to_int ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
If the BigNumber is infinity or NaN, returns nil.
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 519
static VALUE
BigDecimal_to_i(VALUE self)
{
ENTER(5);
int e,n,i,nf;
U_LONG v,b,j;
volatile VALUE str;
char *psz,*pch;
Real *p;
GUARD_OBJ(p,GetVpValue(self,1));
/* Infinity or NaN not converted. */
if(VpIsNaN(p)) {
VpException(VP_EXCEPTION_NaN,"Computation results to 'NaN'(Not a Number)",1);
return Qnil; /* not reached */
} else if(VpIsPosInf(p)) {
VpException(VP_EXCEPTION_INFINITY,"Computation results to 'Infinity'",1);
return Qnil; /* not reached */
} else if(VpIsNegInf(p)) {
VpException(VP_EXCEPTION_INFINITY,"Computation results to '-Infinity'",1);
return Qnil; /* not reached */
}
e = VpExponent10(p);
if(e<=0) return INT2FIX(0);
nf = VpBaseFig();
if(e<=nf) {
e = VpGetSign(p)*p->frac[0];
return INT2FIX(e);
}
str = rb_str_new(0, e+nf+2);
psz = rb_str_ptr_readonly(str);
n = (e+nf-1)/nf;
pch = psz;
if(VpGetSign(p)<0) *pch++ = '-';
for(i=0;i<n;++i) {
b = VpBaseVal()/10;
if(i>=(int)p->Prec) {
while(b) {
*pch++ = '0';
b /= 10;
}
continue;
}
v = p->frac[i];
while(b) {
j = v/b;
*pch++ = (char)(j + '0');
v -= j*b;
b /= 10;
}
}
*pch++ = 0;
return rb_cstr2inum(psz,10);
}
|
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
44 45 46 47 48 49 50 51 52 53 |
# File 'lib/bigdecimal/util.rb', line 44 def to_r sign,digits,base,power = self.split numerator = sign*digits.to_i denomi_power = power - digits.size # base is always 10 if denomi_power < 0 Rational(numerator,base ** (-denomi_power)) else Rational(numerator * (base ** denomi_power),1) end end |
#to_s(*args) ⇒ Object
to_s(s)
Converts the value to a string.
The default format looks like 0.xxxxEnn.
The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.
If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.
A space at the start of s returns positive values with a leading space.
If s contains a number, a space is inserted after each group of that many fractional digits.
If s ends with an ‘E’, engineering notation (0.xxxxEnn) is used.
If s ends with an ‘F’, conventional floating point notation is used.
Examples:
BigDecimal.new(‘-123.45678901234567890’).to_s(‘5F’) -> ‘-123.45678 90123 45678 9’
BigDecimal.new(‘123.45678901234567890’).to_s(‘+8F’) -> ‘+123.45678901 23456789’
BigDecimal.new(‘123.45678901234567890’).to_s(‘ F’) -> ‘ 123.4567890123456789’
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1516
static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
int fmt=0; /* 0:E format */
int fPlus=0; /* =0:default,=1: set ' ' before digits ,set '+' before digits. */
Real *vp;
volatile VALUE str;
char *psz;
char ch;
U_LONG nc;
S_INT mc = 0;
VALUE f;
GUARD_OBJ(vp,GetVpValue(self,1));
if(rb_scan_args(argc,argv,"01",&f)==1) {
if(TYPE(f)==T_STRING) {
SafeStringValue(f);
psz = rb_str_ptr_readonly(f);
if(*psz==' ') {
fPlus = 1; psz++;
} else if(*psz=='+') {
fPlus = 2; psz++;
}
while((ch=*psz++)!=0) {
if(ISSPACE(ch)) continue;
if(!ISDIGIT(ch)) {
if(ch=='F' || ch=='f') fmt = 1; /* F format */
break;
}
mc = mc * 10 + ch - '0';
}
} else {
mc = GetPositiveInt(f);
}
}
if(fmt) {
nc = VpNumOfChars(vp,"F");
} else {
nc = VpNumOfChars(vp,"E");
}
if(mc>0) nc += (nc + mc - 1) / mc + 1;
str = rb_str_new(0, nc);
psz = rb_str_ptr(str);
if(fmt) {
VpToFString(vp, psz, mc, fPlus);
} else {
VpToString (vp, psz, mc, fPlus);
}
rb_str_resize(str, strlen(psz));
return str;
}
|
#truncate(*args) ⇒ Object
truncate(n)
Truncate to the nearest 1, returning the result as a BigDecimal.
BigDecimal(‘3.14159’).truncate -> 3
BigDecimal(‘8.7’).truncate -> 8
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).truncate(3) -> 3.141
BigDecimal(‘13345.234’).truncate(-2) -> 13300.0
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 1357
static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc;
U_LONG mx;
VALUE vLoc;
U_LONG pl = VpSetPrecLimit(0);
if(rb_scan_args(argc,argv,"01",&vLoc)==0) {
iLoc = 0;
} else {
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
}
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c,a,VP_ROUND_DOWN,iLoc); /* 0: truncate */
return ToValue(c);
}
|
#zero? ⇒ Boolean
Returns True if the value is zero.
771 772 773 774 775 776 |
# File 'ext/rubysl/bigdecimal/bigdecimal.c', line 771
static VALUE
BigDecimal_zero(VALUE self)
{
Real *a = GetVpValue(self,1);
return VpIsZero(a) ? Qtrue : Qfalse;
}
|