Class: RubyGL::ComplexShape

Inherits:
Object
  • Object
show all
Defined in:
lib/rubygl/geometry.rb

Overview

Class For Generating 3-D Shapes

Class Method Summary collapse

Class Method Details

.gen_diamond(diamond_height, girdle_radius, girdle_facets) ⇒ Object

Generates an array of 3 component vertices in counter-clockwise triangle configuration. This is the vertex data for a 3 dimensional diamond. The girdle_facets parameters should always be an even number.



125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# File 'lib/rubygl/geometry.rb', line 125

def self.gen_diamond(diamond_height, girdle_radius, girdle_facets)
    # Table Y Value Is Equal To diamond_height
    girdle_y_value = diamond_height * 2.5 / 3.0 # Girdle Upper Ring
    crown_y_midpoint = 2.0 / 3.0
    
    girdle_thickness = diamond_height / 10.0
    
    table_radius = girdle_radius / 1.8
    table_facets = girdle_facets / 2.0
    
    girdle_points = []
    girdle_point_factor = 360.0 / girdle_facets # Multiply With Point Index To Get Degree
    # Generate x And z Values For Diamond Girdle
    for i in 0...girdle_facets
        curr_degree = i.to_f * girdle_point_factor
        curr_rad = Conversion::deg_to_rad(curr_degree)
        
        x = Math::cos(curr_rad) * girdle_radius
        z = Math::sin(curr_rad) * girdle_radius
        
        girdle_points.push(Point.new(x, girdle_y_value, z))
    end
    
    table_points = []
    table_point_factor = 360.0 / table_facets # Multiply With Point Index To Get Degree
    # Generate x And z Values For Diamond Table
    for i in 0...table_facets
        curr_degree = i.to_f * table_point_factor
        curr_rad = Conversion::deg_to_rad(curr_degree)
        
        x = Math::cos(curr_rad) * table_radius
        z = Math::sin(curr_rad) * table_radius
        
        table_points.push(Point.new(x, diamond_height, z))
    end
    
    vertex_array = []
    # Traverse Every Other Point On The Girdle
    for i in 0...girdle_points.size / 2
        center_girdle_index = (i * 2) + 1
        left_girdle_index = center_girdle_index - 1
        right_girdle_index = center_girdle_index + 1
        
        gird_center = girdle_points[center_girdle_index]
        gird_left = girdle_points[left_girdle_index]
        gird_right = Util.overflow_wrap(girdle_points, right_girdle_index)
        
        tab_left = table_points[left_girdle_index / 2]
        tab_right = Util.overflow_wrap(table_points, right_girdle_index / 2)
        
        # Crown Triangles
        # Using 3D Equation Of A Line To Get Central Connection Point For Crown
        slope = tab_left.midpoint(tab_right) - gird_center
        crown_midpoint = slope.scale(crown_y_midpoint) + gird_center
        
        vertex_array.push([gird_left.to_a, crown_midpoint.to_a, gird_center.to_a])
        vertex_array.push([gird_center.to_a, crown_midpoint.to_a, gird_right.to_a])
        
        vertex_array.push([tab_left.to_a, crown_midpoint.to_a, gird_left.to_a])
        vertex_array.push([gird_right.to_a, crown_midpoint.to_a, tab_right.to_a])
        
        vertex_array.push([tab_right.to_a, crown_midpoint.to_a, tab_left.to_a])
        
        # Girdle Triangles
        lower_gird_center = Point.new(gird_center.x, gird_center.y - girdle_thickness, gird_center.z)
        lower_gird_left = Point.new(gird_left.x, gird_left.y - girdle_thickness, gird_left.z)
        lower_gird_right = Point.new(gird_right.x, gird_right.y - girdle_thickness, gird_right.z)
        
        vertex_array.push([gird_left.to_a, gird_center.to_a, lower_gird_left.to_a])
        vertex_array.push([lower_gird_left.to_a, gird_center.to_a, lower_gird_center.to_a])
        
        vertex_array.push([lower_gird_center.to_a, gird_center.to_a, gird_right.to_a])
        vertex_array.push([lower_gird_center.to_a, gird_right.to_a, lower_gird_right.to_a])
        
        # Pavilion Triangles
        pavil_bottom = Point.new(0, 0, 0)
        
        vertex_array.push([lower_gird_left.to_a, lower_gird_center.to_a, pavil_bottom.to_a])
        vertex_array.push([pavil_bottom.to_a, lower_gird_center.to_a, lower_gird_right.to_a])
        
        # Table Triangles
        table_mid = Point.new(0, diamond_height, 0)
        
        vertex_array.push([tab_left.to_a, table_mid.to_a, tab_right.to_a])
    end
    
    vertex_array.flatten!
    
    vertex_array
end

.gen_sphere(radius, num_rings) ⇒ Object

Generates an array of 3 component vertices in counter-clockwise triangle configuration. This is the vertex data for a 3 dimensional sphere. The num_rings parameter should always be 0 or a positive even number.



61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# File 'lib/rubygl/geometry.rb', line 61

def self.gen_sphere(radius, num_rings)
    points_per_ring = num_rings * 2 + 4
    rings_per_half = num_rings / 2 + 1 # Count The Center Ring For Both Sides

    # Generate Points From Bottom Of Sphere To The Top
    points = []
    for i in 1..num_rings + 1
        ring_y_factor = (i - rings_per_half).to_f / rings_per_half
        ring_y_value = ring_y_factor * radius
        ring_radius = Math::cos(Math::asin(ring_y_value / radius)) * radius
        
        for i in 0..points_per_ring
            radians = Conversion.deg_to_rad(i.to_f / points_per_ring * 360)
            
            x = Math::cos(radians) * ring_radius
            z = Math::sin(radians) * ring_radius
            
            points.push(Point.new(x, ring_y_value, z))
        end
    end
    
    vertex_array, previous_points = [], []
    
    # Build Bottom End-Cap
    bottom_point = [0, -radius, 0]
    for i in 0...points_per_ring
        curr_vert = points[i]
        next_vert = Util.overflow_wrap(points, i + 1)
       
        vertex_array.push([curr_vert.to_a, next_vert.to_a, bottom_point])
        previous_points.push(curr_vert)
    end
    
    # Build Intermediate Mesh
    for i in points_per_ring...points.size
        curr_vert = points[i]
        next_vert = Util.overflow_wrap(points, i + 1)
        
        last_curr_vert = previous_points[i % points_per_ring]
        last_next_vert = Util.overflow_wrap(previous_points, (i % points_per_ring) + 1)

        vertex_array.push([curr_vert.to_a, next_vert.to_a, last_curr_vert.to_a])
        vertex_array.push([next_vert.to_a, last_next_vert.to_a, last_curr_vert.to_a])

        previous_points[i % points_per_ring] = curr_vert
    end
    
    # Build Top End-Cap
    top_point = [0, radius, 0]
    for i in 0...previous_points.size()
        curr_vert = previous_points[i]
        next_vert = Util.overflow_wrap(previous_points, i + 1)
        
        vertex_array.push([next_vert.to_a, curr_vert.to_a, top_point.to_a])
    end
    
    vertex_array.flatten!
    
    vertex_array
end