Class: MeshNormalAnalyzer

Inherits:
Object
  • Object
show all
Defined in:
lib/ruby3mf/mesh_normal_analyzer.rb

Instance Method Summary collapse

Constructor Details

#initialize(mesh) ⇒ MeshNormalAnalyzer

Returns a new instance of MeshNormalAnalyzer.



3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# File 'lib/ruby3mf/mesh_normal_analyzer.rb', line 3

def initialize(mesh)
  @vertices = []
  @intersections = []

  vertices_node = mesh.css("vertices")
  vertices_node.children.each do |vertex_node|
    if vertex_node.attributes.count > 0
      x = vertex_node.attributes['x'].to_s.to_f
      y = vertex_node.attributes['y'].to_s.to_f
      z = vertex_node.attributes['z'].to_s.to_f
      @vertices << [x, y, z]
    end
  end

  @triangles = []
  triangles_node = mesh.css("triangles")
  triangles_node.children.each do |triangle_node|
    if triangle_node.attributes.count > 0
      v1 = triangle_node.attributes['v1'].to_s.to_i
      v2 = triangle_node.attributes['v2'].to_s.to_i
      v3 = triangle_node.attributes['v3'].to_s.to_i
      @triangles << [v1, v2, v3]
    end
  end
end

Instance Method Details

#compare_normals(triangle, hit_direction) ⇒ Object



98
99
100
101
102
103
104
105
106
# File 'lib/ruby3mf/mesh_normal_analyzer.rb', line 98

def compare_normals(triangle, hit_direction)
  oriented_normal = cross_product(
      vector_to(triangle[0], triangle[1]),
      vector_to(triangle[1], triangle[2]))

  angle = angle_between(oriented_normal, hit_direction)

  angle < Math::PI / 2.0
end

#found_inward_triangleObject



29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# File 'lib/ruby3mf/mesh_normal_analyzer.rb', line 29

def found_inward_triangle
  # Trace a ray toward the center of the vertex points.  This will hopefully
  # maximize our chances of hitting the object's trianges on the first try.
  center = point_cloud_center(@vertices)

  @point = [0.0, 0.0, 0.0]
  @direction = vector_to(@point, center)

  # Make sure that we have a reasonably sized direction.
  # Might end up with a zero length vector if the center is also
  # at the origin.
  if magnitude(@direction) < 0.1
    @direction = [0.57, 0.57, 0.57]
  end

  # make the direction a unit vector just to make the
  # debug info easier to understand
  @direction = normalize(@direction)

  attempts = 0
  begin
    # Get all of the intersections from the ray and put them in order of distance.
    # The triangle we hit that's farthest from the start of the ray should always be
    # a triangle that points away from us (otherwise we would hit a triangle even
    # further away, assuming the mesh is closed).
    #
    # One special case is when the set of triangles we hit at that distance is greater
    # than one.  In that case we might have hit a "corner" of the model and so we don't
    # know which of the two (or more) points away from us.  In that case, cast a random
    # ray from the center of the object and try again.

    @triangles.each do |tri|
      v1 = @vertices[tri[0]]
      v2 = @vertices[tri[1]]
      v3 = @vertices[tri[2]]

      process_triangle(@point, @direction, [v1, v2, v3])
    end

    if @intersections.count > 0
      # Sort the intersections so we can find the hits that are furthest away.
      @intersections.sort! {|left, right| left[0] <=> right[0]}

      max_distance = @intersections.last[0]
      furthest_hits = @intersections.select{|hit| (hit[0]-max_distance).abs < 0.0001}

      # Print out the hits
      # furthest_hits.each {|hit| puts hit[1].to_s}

      found_good_hit = furthest_hits.count == 1
    end

    if found_good_hit
      outside_triangle = furthest_hits.last[2]
    else
      @intersections = []
      attempts = attempts + 1

      target = [Random.rand(10)/10.0, Random.rand(10)/10.0, Random.rand(10)/10.0]
      @point = center
      @direction = normalize(vector_to(@point, target))
    end
  end until found_good_hit || attempts >= 10

  # return true if we hit a triangle with an inward pointing normal
  # (according to counter-clockwise normal orientation)
  found_good_hit && !compare_normals(outside_triangle, @direction)
end

#intersect(point, direction, triangle) ⇒ Object



121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# File 'lib/ruby3mf/mesh_normal_analyzer.rb', line 121

def intersect(point, direction, triangle)
  v0 = triangle[0]
  v1 = triangle[1]
  v2 = triangle[2]

  return [false, 0] if v0.nil? || v1.nil? || v2.nil?

  e1 = vector_to(v0, v1)
  e2 = vector_to(v0, v2)

  h = cross_product(direction, e2)
  a = dot_product(e1, h)

  if a.abs < 0.00001
    return false, 0
  end

  f = 1.0/a
  s = vector_to(v0, point)
  u = f * dot_product(s, h)

  if u < 0.0 || u > 1.0
    return false, 0
  end

  q = cross_product(s, e1)
  v = f * dot_product(direction, q)

  if v < 0.0 || u + v > 1.0
    return false, 0
  end

  t = f * dot_product(e2, q)
  [t > 0, t]
end

#process_triangle(point, direction, triangle) ⇒ Object



108
109
110
111
112
113
114
115
116
117
118
119
# File 'lib/ruby3mf/mesh_normal_analyzer.rb', line 108

def process_triangle(point, direction, triangle)
  found_intersection, t = intersect(point, direction, triangle)

  if t > 0
    intersection = []
    intersection[0] = point[0] + t * direction[0]
    intersection[1] = point[1] + t * direction[1]
    intersection[2] = point[2] + t * direction[2]

    @intersections << [t, intersection, triangle]
  end
end