Module: GR

Extended by:
GRCommons::GRCommonUtils, GRCommons::JupyterSupport
Defined in:
lib/gr.rb,
lib/gr/ffi.rb,
lib/gr/plot.rb,
lib/gr/grbase.rb,
lib/gr/version.rb,
lib/gr_commons/gr_logger.rb

Overview

OverView of GR.rb

+--------------------+  +--------------------+
| GR module          |  | GR3 module         |
| +----------------+ |  | +----------------+ |
| | GR::FFI        | |  | | GR3::FFI       | |
| | +   libGR.so   | |  | | +    libGR3.so | |
| +----------------+ |  | +----------------+ |
|   | define_method  |  |   | define_method  |
| +----------------+ |  | +----------------+ |
| | | GR::GRBase   | |  | | | GR3::GR3Base | |
| | v  (Pri^ate)   | |  | | v  (Pri^ate)   | |
| +++--------------+ |  | +++--------------+ |
|  | Extend          |  |  | Extend          |
|  v                 |  |  v       +-------+ |
|      +-----------+ |  |          | Check | |
|      | GR::Plot  | |  |       <--+ Error | |
|      +-----------+ |  |          +-------+ |
+--------------------+  +----------+---------+
          ^                        ^
          |  +------------------+  |
   Extend |  | GRCommons module |  | Extend
          |  | +--------------+ |  |
          |  | |    Fiddley   | |  |
          |  | +--------------+ |  |
          |  | +--------------+ |  |
          +----+ CommonUtils  +----+
          |  | +--------------+ |  |
          |  | +--------------+ |  |
          +----+    Version   +----+
          |  | +--------------+ |
          |  | +--------------+ |
          +----+JupyterSupport| |
             | +--------------+ |
             +------------------+

(You can edit the above AA diagram with asciiflow.com/)

Fiddley is Ruby-FFI compatible API layer for Fiddle.

The GR module works without Numo::Narrray. GR3 and GR::Plot depends on numo-narray.

This is a procedural interface to the GR plotting library, github.com/sciapp/gr

Defined Under Namespace

Modules: FFI Classes: Error, NotFoundError, Plot

Constant Summary collapse

ASF_BUNDLED =
0
ASF_INDIVIDUAL =
1
NOCLIP =
0
CLIP =
1
COORDINATES_WC =
0
COORDINATES_NDC =
1
INTSTYLE_HOLLOW =
0
INTSTYLE_SOLID =
1
INTSTYLE_PATTERN =
2
INTSTYLE_HATCH =
3
TEXT_HALIGN_NORMAL =
0
TEXT_HALIGN_LEFT =
1
TEXT_HALIGN_CENTER =
2
TEXT_HALIGN_RIGHT =
3
TEXT_VALIGN_NORMAL =
0
TEXT_VALIGN_TOP =
1
TEXT_VALIGN_CAP =
2
TEXT_VALIGN_HALF =
3
TEXT_VALIGN_BASE =
4
TEXT_VALIGN_BOTTOM =
5
TEXT_PATH_RIGHT =
0
TEXT_PATH_LEFT =
1
TEXT_PATH_UP =
2
TEXT_PATH_DOWN =
3
TEXT_PRECISION_STRING =
0
TEXT_PRECISION_CHAR =
1
TEXT_PRECISION_STROKE =
2
LINETYPE_SOLID =
1
LINETYPE_DASHED =
2
LINETYPE_DOTTED =
3
LINETYPE_DASHED_DOTTED =
4
LINETYPE_DASH_2_DOT =
-1
LINETYPE_DASH_3_DOT =
-2
LINETYPE_LONG_DASH =
-3
LINETYPE_LONG_SHORT_DASH =
-4
LINETYPE_SPACED_DASH =
-5
LINETYPE_SPACED_DOT =
-6
LINETYPE_DOUBLE_DOT =
-7
LINETYPE_TRIPLE_DOT =
-8
MARKERTYPE_DOT =
1
MARKERTYPE_PLUS =
2
MARKERTYPE_ASTERISK =
3
MARKERTYPE_CIRCLE =
4
MARKERTYPE_DIAGONAL_CROSS =
5
MARKERTYPE_SOLID_CIRCLE =
-1
MARKERTYPE_TRIANGLE_UP =
-2
MARKERTYPE_SOLID_TRI_UP =
-3
MARKERTYPE_TRIANGLE_DOWN =
-4
MARKERTYPE_SOLID_TRI_DOWN =
-5
MARKERTYPE_SQUARE =
-6
MARKERTYPE_SOLID_SQUARE =
-7
MARKERTYPE_BOWTIE =
-8
MARKERTYPE_SOLID_BOWTIE =
-9
MARKERTYPE_HOURGLASS =
-10
MARKERTYPE_SOLID_HGLASS =
-11
MARKERTYPE_DIAMOND =
-12
MARKERTYPE_SOLID_DIAMOND =
-13
MARKERTYPE_STAR =
-14
MARKERTYPE_SOLID_STAR =
-15
MARKERTYPE_TRI_UP_DOWN =
-16
MARKERTYPE_SOLID_TRI_RIGHT =
-17
MARKERTYPE_SOLID_TRI_LEFT =
-18
MARKERTYPE_HOLLOW_PLUS =
-19
MARKERTYPE_SOLID_PLUS =
-20
MARKERTYPE_PENTAGON =
-21
MARKERTYPE_HEXAGON =
-22
MARKERTYPE_HEPTAGON =
-23
MARKERTYPE_OCTAGON =
-24
MARKERTYPE_STAR_4 =
-25
MARKERTYPE_STAR_5 =
-26
MARKERTYPE_STAR_6 =
-27
MARKERTYPE_STAR_7 =
-28
MARKERTYPE_STAR_8 =
-29
MARKERTYPE_VLINE =
-30
MARKERTYPE_HLINE =
-31
MARKERTYPE_OMARK =
-32
OPTION_X_LOG =
1
OPTION_Y_LOG =
2
OPTION_Z_LOG =
4
OPTION_FLIP_X =
8
OPTION_FLIP_Y =
16
OPTION_FLIP_Z =
32
OPTION_LINES =
0
OPTION_MESH =
1
OPTION_FILLED_MESH =
2
OPTION_Z_SHADED_MESH =
3
OPTION_COLORED_MESH =
4
OPTION_CELL_ARRAY =
5
OPTION_SHADED_MESH =
6
MODEL_RGB =
0
MODEL_HSV =
1
COLORMAP_UNIFORM =
0
COLORMAP_TEMPERATURE =
1
COLORMAP_GRAYSCALE =
2
COLORMAP_GLOWING =
3
COLORMAP_RAINBOWLIKE =
4
COLORMAP_GEOLOGIC =
5
COLORMAP_GREENSCALE =
6
COLORMAP_CYANSCALE =
7
COLORMAP_BLUESCALE =
8
COLORMAP_MAGENTASCALE =
9
COLORMAP_REDSCALE =
10
COLORMAP_FLAME =
11
COLORMAP_BROWNSCALE =
12
COLORMAP_PILATUS =
13
COLORMAP_AUTUMN =
14
COLORMAP_BONE =
15
COLORMAP_COOL =
16
COLORMAP_COPPER =
17
COLORMAP_GRAY =
18
COLORMAP_HOT =
19
COLORMAP_HSV =
20
COLORMAP_JET =
21
COLORMAP_PINK =
22
COLORMAP_SPECTRAL =
23
COLORMAP_SPRING =
24
COLORMAP_SUMMER =
25
COLORMAP_WINTER =
26
COLORMAP_GIST_EARTH =
27
COLORMAP_GIST_HEAT =
28
COLORMAP_GIST_NCAR =
29
COLORMAP_GIST_RAINBOW =
30
COLORMAP_GIST_STERN =
31
COLORMAP_AFMHOT =
32
COLORMAP_BRG =
33
COLORMAP_BWR =
34
COLORMAP_COOLWARM =
35
COLORMAP_CMRMAP =
36
COLORMAP_CUBEHELIX =
37
COLORMAP_GNUPLOT =
38
COLORMAP_GNUPLOT2 =
39
COLORMAP_OCEAN =
40
COLORMAP_RAINBOW =
41
COLORMAP_SEISMIC =
42
COLORMAP_TERRAIN =
43
COLORMAP_VIRIDIS =
44
COLORMAP_INFERNO =
45
COLORMAP_PLASMA =
46
COLORMAP_MAGMA =
47
FONT_TIMES_ROMAN =
101
FONT_TIMES_ITALIC =
102
FONT_TIMES_BOLD =
103
FONT_TIMES_BOLDITALIC =
104
FONT_HELVETICA =
105
FONT_HELVETICA_OBLIQUE =
106
FONT_HELVETICA_BOLD =
107
FONT_HELVETICA_BOLDOBLIQUE =
108
FONT_COURIER =
109
FONT_COURIER_OBLIQUE =
110
FONT_COURIER_BOLD =
111
FONT_COURIER_BOLDOBLIQUE =
112
FONT_SYMBOL =
113
FONT_BOOKMAN_LIGHT =
114
FONT_BOOKMAN_LIGHTITALIC =
115
FONT_BOOKMAN_DEMI =
116
FONT_BOOKMAN_DEMIITALIC =
117
FONT_NEWCENTURYSCHLBK_ROMAN =
118
FONT_NEWCENTURYSCHLBK_ITALIC =
119
FONT_NEWCENTURYSCHLBK_BOLD =
120
FONT_NEWCENTURYSCHLBK_BOLDITALIC =
121
FONT_AVANTGARDE_BOOK =
122
FONT_AVANTGARDE_BOOKOBLIQUE =
123
FONT_AVANTGARDE_DEMI =
124
FONT_AVANTGARDE_DEMIOBLIQUE =
125
FONT_PALATINO_ROMAN =
126
FONT_PALATINO_ITALIC =
127
FONT_PALATINO_BOLD =
128
FONT_PALATINO_BOLDITALIC =
129
FONT_ZAPFCHANCERY_MEDIUMITALIC =
130
FONT_ZAPFDINGBATS =
131
'ps'
'eps'
'pdf'
'pgf'
'bmp'
'jpeg'
'jpg'
'png'
'tiff'
'tif'
'fig'
'svg'
'wmf'
PATH_STOP =
0x00
PATH_MOVETO =
0x01
PATH_LINETO =
0x02
PATH_CURVE3 =
0x03
PATH_CURVE4 =
0x04
PATH_CLOSEPOLY =
0x4f
GDP_DRAW_PATH =
1
GDP_DRAW_LINES =
2
GDP_DRAW_MARKERS =
3
MPL_SUPPRESS_CLEAR =
1
MPL_POSTPONE_UPDATE =
2
XFORM_BOOLEAN =
0
XFORM_LINEAR =
1
XFORM_LOG =
2
XFORM_LOGLOG =
3
XFORM_CUBIC =
4
XFORM_EQUALIZED =
5
ENCODING_LATIN1 =
300
ENCODING_UTF8 =
301
UPSAMPLE_VERTICAL_DEFAULT =
0x00000000
UPSAMPLE_HORIZONTAL_DEFAULT =
0x00000000
DOWNSAMPLE_VERTICAL_DEFAULT =
0x00000000
DOWNSAMPLE_HORIZONTAL_DEFAULT =
0x00000000
UPSAMPLE_VERTICAL_NEAREST =
0x00000001
UPSAMPLE_HORIZONTAL_NEAREST =
0x00000100
DOWNSAMPLE_VERTICAL_NEAREST =
0x00010000
DOWNSAMPLE_HORIZONTAL_NEAREST =
0x01000000
UPSAMPLE_VERTICAL_LINEAR =
0x00000002
UPSAMPLE_HORIZONTAL_LINEAR =
0x00000200
DOWNSAMPLE_VERTICAL_LINEAR =
0x00020000
DOWNSAMPLE_HORIZONTAL_LINEAR =
0x02000000
UPSAMPLE_VERTICAL_LANCZOS =
0x00000003
UPSAMPLE_HORIZONTAL_LANCZOS =
0x00000300
DOWNSAMPLE_VERTICAL_LANCZOS =
0x00030000
DOWNSAMPLE_HORIZONTAL_LANCZOS =
0x03000000
RESAMPLE_DEFAULT =
(UPSAMPLE_VERTICAL_DEFAULT | UPSAMPLE_HORIZONTAL_DEFAULT |
DOWNSAMPLE_VERTICAL_DEFAULT | DOWNSAMPLE_HORIZONTAL_DEFAULT)
RESAMPLE_NEAREST =
(UPSAMPLE_VERTICAL_NEAREST | UPSAMPLE_HORIZONTAL_NEAREST |
DOWNSAMPLE_VERTICAL_NEAREST | DOWNSAMPLE_HORIZONTAL_NEAREST)
RESAMPLE_LINEAR =
(UPSAMPLE_VERTICAL_LINEAR | UPSAMPLE_HORIZONTAL_LINEAR |
DOWNSAMPLE_VERTICAL_LINEAR | DOWNSAMPLE_HORIZONTAL_LINEAR)
RESAMPLE_LANCZOS =
(UPSAMPLE_VERTICAL_LANCZOS | UPSAMPLE_HORIZONTAL_LANCZOS |
DOWNSAMPLE_VERTICAL_LANCZOS | DOWNSAMPLE_HORIZONTAL_LANCZOS)
PROJECTION_DEFAULT =
0
PROJECTION_ORTHOGRAPHIC =
1
PROJECTION_PERSPECTIVE =
2
VERSION =
GRCommons::VERSION

Constants included from GRCommons::GRCommonUtils

GRCommons::GRCommonUtils::SUPPORTED_TYPES

Class Attribute Summary collapse

Class Method Summary collapse

Methods included from GRCommons::JupyterSupport

extended, show

Methods included from GRCommons::GRCommonUtils

create_ffi_pointer, double, equal_length, float, inquiry, inquiry_double, inquiry_int, inquiry_uint, int, narray?, read_ffi_pointer, uint, uint16, uint8

Class Attribute Details

.ffi_libObject

Returns the value of attribute ffi_lib


54
55
56
# File 'lib/gr.rb', line 54

def ffi_lib
  @ffi_lib
end

Class Method Details

._contour_Object

Note:

`contour` is overwritten by `require gr/plot`. The original method is moved to the underscored name. The yard document will show the method name after evacuation.

Draw contours of a three-dimensional data set whose values are specified over a rectangular mesh. Contour lines may optionally be labeled.

Parameters:

  • x (Array, NArray)

    A list containing the X coordinates

  • y (Array, NArray)

    A list containing the Y coordinates

  • h (Array, NArray)

    A list containing the Z coordinate for the height values

  • z (Array, NArray)

    A list containing the Z coordinate for the height values A list of length `len(x)` * `len(y)` or an appropriately dimensioned array containing the Z coordinates

  • major_h (Integer)

    Directs GR to label contour lines. For example, a value of 3 would label every third line. A value of 1 will label every line. A value of 0 produces no labels. To produce colored contour lines, add an offset of 1000 to `major_h`.


1334
1335
1336
1337
1338
1339
1340
# File 'lib/gr/plot.rb', line 1334

def contour(x, y, h, z, major_h)
  # TODO: check: Arrays have incorrect length or dimension.
  nx = x.length
  ny = y.length
  nh = h.length
  super(nx, ny, nh, x, y, h, z, major_h)
end

._contourf_Object

Note:

`contourf` is overwritten by `require gr/plot`. The original method is moved to the underscored name. The yard document will show the method name after evacuation.

Draw filled contours of a three-dimensional data set whose values are specified over a rectangular mesh.

Parameters:

  • x (Array, NArray)

    A list containing the X coordinates

  • y (Array, NArray)

    A list containing the Y coordinates

  • h (Array, NArray)

    A list containing the Z coordinate for the height values or the number of contour lines which will be evenly distributed between minimum and maximum Z value

  • z (Array, NArray)

    A list of length `len(x)` * `len(y)` or an appropriately dimensioned array containing the Z coordinates


1340
1341
1342
1343
1344
1345
1346
# File 'lib/gr/plot.rb', line 1340

def contourf(x, y, h, z, major_h)
  # TODO: check: Arrays have incorrect length or dimension.
  nx = x.length
  ny = y.length
  nh = h.length
  super(nx, ny, nh, x, y, h, z, major_h)
end

._hexbin_Integer

Note:

`hexbin` is overwritten by `require gr/plot`. The original method is moved to the underscored name. The yard document will show the method name after evacuation.

Returns:

  • (Integer)

1346
1347
1348
1349
# File 'lib/gr/plot.rb', line 1346

def hexbin(x, y, nbins)
  n = x.length
  super(n, x, y, nbins)
end

._shade_Object

Note:

`hexbin` is overwritten by `require gr/plot`. The original method is moved to the underscored name. The yard document will show the method name after evacuation.


# File 'lib/gr/plot.rb', line 1388

._surface_Object

Note:

`surface` is overwritten by `require gr/plot`. The original method is moved to the underscored name. The yard document will show the method name after evacuation.

Draw a three-dimensional surface plot for the given data points.

`x` and `y` define a grid. `z` is a singly dimensioned array containing at least `nx` * `ny` data points. Z describes the surface height at each point on the grid. Data is ordered as shown in the table: (Plot) Draw a three-dimensional surface plot.

Parameters:

  • x (Array, NArray)

    A list containing the X coordinates

  • y (Array, NArray)

    A list containing the Y coordinates

  • z (Array, NArray)

    A list of length `len(x)` * `len(y)` or an appropriately dimensioned array containing the Z coordinates

  • option (Integer)

    Surface display option

    • 0 LINES - Use X Y polylines to denote the surface

    • 1 MESH - Use a wire grid to denote the surface

    • 2 FILLED_MESH - Applies an opaque grid to the surface

    • 3 Z_SHADED_MESH - Applies Z-value shading to the surface

    • 4 COLORED_MESH - Applies a colored grid to the surface

    • 5 CELL_ARRAY - Applies a grid of individually-colored cells to the surface

    • 6 SHADED_MESH - Applies light source shading to the 3-D surface


1363
1364
1365
1366
1367
1368
# File 'lib/gr/plot.rb', line 1363

def surface(x, y, z, option)
  # TODO: check: Arrays have incorrect length or dimension.
  nx = x.length
  ny = y.length
  super(nx, ny, x, y, z, option)
end

.activatewsObject

Activate the specified workstation.

Parameters:

  • workstation_id (Integer)

    A workstation identifier.


# File 'lib/gr.rb', line 154

.adjustlimits(amin, amax) ⇒ Integer

Returns:

  • (Integer)

1475
1476
1477
1478
1479
1480
1481
# File 'lib/gr.rb', line 1475

def adjustlimits(amin, amax)
  inquiry %i[double double] do |pamin, pamax|
    pamin.write_double amin
    pamax.write_double amax
    super(pamin, pamax)
  end
end

.adjustrange(amin, amax) ⇒ Object


1483
1484
1485
1486
1487
1488
1489
# File 'lib/gr.rb', line 1483

def adjustrange(amin, amax)
  inquiry %i[double double] do |pamin, pamax|
    pamin.write_double amin
    pamax.write_double amax
    super(pamin, pamax)
  end
end

.axesObject Also known as: axes2d

Draw X and Y coordinate axes with linearly and/or logarithmically spaced tick marks.

Tick marks are positioned along each axis so that major tick marks fall on the axes origin (whether visible or not). Major tick marks are labeled with the corresponding data values. Axes are drawn according to the scale of the window. Axes and tick marks are drawn using solid lines; line color and width can be modified using the gr_setlinetype and gr_setlinewidth functions. Axes are drawn according to the linear or logarithmic transformation established by the gr_setscale function.

Parameters:

  • x_tick (Numeric)

    The interval between minor tick marks on the X axis.

  • y_tick (Numeric)

    The interval between minor tick marks on the Y axis.

  • x_org (Numeric)

    The world coordinates of the origin (point of intersection) of the X axis.

  • y_org (Numeric)

    The world coordinates of the origin (point of intersection) of the Y axis.

  • major_x (Integer)

    Unitless integer values specifying the number of minor tick intervals between major tick marks. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis.

  • major_y (Integer)

    Unitless integer values specifying the number of minor tick intervals between major tick marks. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis.

  • tick_size (Numeric)

    The length of minor tick marks specified in a normalized device coordinate unit. Major tick marks are twice as long as minor tick marks. A negative value reverses the tick marks on the axes from inward facing to outward facing (or vice versa).


1084
# File 'lib/gr.rb', line 1084

alias axes2d axes

.axes3dObject

Draw X, Y and Z coordinate axes with linearly and/or logarithmically spaced tick marks.

Tick marks are positioned along each axis so that major tick marks fall on the axes origin (whether visible or not). Major tick marks are labeled with the corresponding data values. Axes are drawn according to the scale of the window. Axes and tick marks are drawn using solid lines; line color and width can be modified using the `setlinetype` and `setlinewidth` functions. Axes are drawn according to the linear or logarithmic transformation established by the `setscale` function.

Parameters:

  • x_tick (Numeric)

    The interval between minor tick marks on the X axis.

  • y_tick (Numeric)

    The interval between minor tick marks on the Y axis.

  • z_tick (Numeric)

    The interval between minor tick marks on the Z axis.

  • x_org (Numeric)

    The world coordinates of the origin (point of intersection) of the X axes.

  • y_org (Numeric)

    The world coordinates of the origin (point of intersection) of the Y axes.

  • z_org (Numeric)

    The world coordinates of the origin (point of intersection) of the Z axes.

  • major_x (Integer)

    Unitless integer values specifying the number of minor tick intervals between major tick marks. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis.

  • major_y (Integer)

    Unitless integer values specifying the number of minor tick intervals between major tick marks. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis.

  • major_z (Integer)

    Unitless integer values specifying the number of minor tick intervals between major tick marks. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis.

  • tick_size (Numeric)

    The length of minor tick marks specified in a normalized device coordinate unit. Major tick marks are twice as long as minor tick marks. A negative value reverses the tick marks on the axes from inward facing to outward facing (or vice versa).


# File 'lib/gr.rb', line 1245

.axeslblObject

Note:

This method uses GRCommons::Fiddley::Function as a callback function. Please read the source code If you have to use it. There are some examples of the use of this function in the Plot class..

Create axes in the current workspace and supply a custom function for changing the behaviour of the tick labels.

Similar to gr_axes() but allows more fine-grained control over tick labels and text positioning by supplying callback functions. Within the callback function you can use normal GR text primitives for performing any manipulations on the label text. See gr_axes() for more details on drawing axes.

  • fpx/fpy

    • param x [Numeric] NDC of the label in X direction.

    • param y [Numeric] NDC of the label in Y direction.

    • param svalue [String] Internal string representation of the text drawn by GR at (x,y).

    • param value [Numeric] Floating point representation of the label drawn at (x,y).

Parameters:

  • x_tick (Numeric)

    The interval between minor tick marks on the X axis.

  • y_tick (Numeric)

    The interval between minor tick marks on the Y axis.

  • x_org (Numeric)

    The world coordinate of the origin (point of intersection) of the X axis.

  • y_org (Numeric)

    The world coordinate of the origin (point of intersection) of the Y axis.

  • major_x (Integer)

    Unitless integer value specifying the number of minor tick intervals between major tick marks on the X axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis.

  • major_y (Integer)

    Unitless integer value specifying the number of minor tick intervals between major tick marks on the Y axis. Values of 0 or 1 imply no minor ticks. Negative values specify no labels will be drawn for the associated axis.

  • tick_size (Numeric)

    The length of minor tick marks specified in a normalized device coordinate unit. Major tick marks are twice as long as minor tick marks. A negative value reverses the tick marks on the axes from inward facing to outward facing (or vice versa).

  • fpx (Pointer)

    Function pointer to a function that returns a label for a given tick on the X axis. The callback function should have the following arguments.

  • fpy (Pointer)

    Exactly same as the fpx above, but for the the Y axis.


# File 'lib/gr.rb', line 1086

.barplot(labels, heights, kv = {}) ⇒ Object

(Plot) Draw a bar plot.


1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
# File 'lib/gr/plot.rb', line 1402

def barplot(labels, heights, kv = {})
  labels = labels.map(&:to_s)
  wc, hc = barcoordinates(heights)
  create_plot(:bar, labels, heights, kv) do |plt|
    if kv[:horizontal]
      plt.args = [[hc, wc, nil, nil, '']]
      plt.kvs[:yticks] = [1, 1]
      plt.kvs[:yticklabels] = labels
    else
      plt.args = [[wc, hc, nil, nil, '']]
      plt.kvs[:xticks] = [1, 1]
      plt.kvs[:xticklabels] = labels
    end
  end
end

.begingraphicsObject

Open a file for graphics output.

`begingraphics` allows to write all graphics output into a XML-formatted file until the `endgraphics` functions is called. The resulting file may later be imported with the `importgraphics` function.

Parameters:

  • path (String)

    Filename for the graphics file.


# File 'lib/gr.rb', line 1772

.beginprint(file_path) ⇒ Object

Note:

Ruby feature - you can use block to call endprint automatically.

Open and activate a print device.

`beginprint` opens an additional graphics output device. The device type is obtained from the given file extension

Parameters:

  • pathname (String)

    Filename for the print device. The following file types are supported:

    • .ps, .eps : PostScript

    • .pdf : Portable Document Format

    • .bmp : Windows Bitmap (BMP)

    • .jpeg, .jpg : JPEG image file

    • .png : Portable Network Graphics file (PNG)

    • .tiff, .tif : Tagged Image File Format (TIFF)

    • .svg : Scalable Vector Graphics

    • .wmf : Windows Metafile

    • .mp4 : MPEG-4 video file

    • .webm : WebM video file

    • .ogg : Ogg video file


1512
1513
1514
1515
1516
1517
1518
# File 'lib/gr.rb', line 1512

def beginprint(file_path)
  super(file_path)
  if block_given?
    yield
    endprint
  end
end

.beginprintextObject

Open and activate a print device with the given layout attributes.

Parameters:

  • pathname (String)

    Filename for the print device.

  • mode (String)

    Output mode (Color, GrayScale)

  • fmt (String)

    Output format The available formats are:

    • A4 : 0.210 x 0.297

    • B5 : 0.176 x 0.250

    • Letter : 0.216 x 0.279

    • Legal : 0.216 x 0.356

    • Executive : 0.191 x 0.254

    • A0 : 0.841 x 1.189

    • A1 : 0.594 x 0.841

    • A2 : 0.420 x 0.594

    • A3 : 0.297 x 0.420

    • A5 : 0.148 x 0.210

    • A6 : 0.105 x 0.148

    • A7 : 0.074 x 0.105

    • A8 : 0.052 x 0.074

    • A9 : 0.037 x 0.052

    • B0 : 1.000 x 1.414

    • B1 : 0.500 x 0.707

    • B10 : 0.031 x 0.044

    • B2 : 0.500 x 0.707

    • B3 : 0.353 x 0.500

    • B4 : 0.250 x 0.353

    • B6 : 0.125 x 0.176

    • B7 : 0.088 x 0.125

    • B8 : 0.062 x 0.088

    • B9 : 0.044 x 0.062

    • C5E : 0.163 x 0.229

    • Comm10E : 0.105 x 0.241

    • DLE : 0.110 x 0.220

    • Folio : 0.210 x 0.330

    • Ledger : 0.432 x 0.279

    • Tabloid : 0.279 x 0.432

  • orientation (String)

    Page orientation (Landscape, Portait)


# File 'lib/gr.rb', line 1520

.beginselectionObject


# File 'lib/gr.rb', line 1807

.camerainteractionObject

Rotate the current scene according to a virtual arcball.

This function requires values between 0 (left side or bottom of the drawing area) and 1 (right side or top of the drawing area).

Parameters:

  • start_mouse_pos_x (Numeric)

    x component of the start mouse position

  • start_mouse_pos_y (Numeric)

    y component of the start mouse position

  • end_mouse_pos_x (Numeric)

    x component of the end mouse position

  • end_mouse_pos_y (Numeric)

    y component of the end mouse position


# File 'lib/gr.rb', line 2223

.cellarray(xmin, xmax, ymin, ymax, dimx, dimy, color) ⇒ Object

Display rasterlike images in a device-independent manner. The cell array function partitions a rectangle given by two corner points into DIMX X DIMY cells, each of them colored individually by the corresponding color index of the given cell array.

The values for `xmin`, `xmax`, `ymin` and `ymax` are in world coordinates.

Parameters:

  • xmin (Numeric)

    Lower left point of the rectangle

  • ymin (Numeric)

    Lower left point of the rectangle

  • xmax (Numeric)

    Upper right point of the rectangle

  • ymax (Numeric)

    Upper right point of the rectangle

  • dimx (Integer)

    X dimension of the color index array

  • dimy (Integer)

    Y dimension of the color index array

  • color (Array, NArray)

    Color index array


304
305
306
# File 'lib/gr.rb', line 304

def cellarray(xmin, xmax, ymin, ymax, dimx, dimy, color)
  super(xmin, xmax, ymin, ymax, dimx, dimy, 1, 1, dimx, dimy, int(color))
end

.clearwsObject

Clear the specified workstation.


# File 'lib/gr.rb', line 170

.closegksObject


# File 'lib/gr.rb', line 102

.closesegObject


# File 'lib/gr.rb', line 924

.closewsObject

Close the specified workstation.

Parameters:

  • workstation_id (Integer)

    A workstation identifier.


# File 'lib/gr.rb', line 148

.colorbarObject


1454
1455
1456
1457
1458
# File 'lib/gr.rb', line 1454

def inqcolor(color)
  inquiry_int do |rgb|
    super(color, rgb)
  end
end

.configurewsObject

Configure the specified workstation.


# File 'lib/gr.rb', line 166

.contour(*args) ⇒ Object

(Plot) Draw a contour plot.


1345
1346
1347
1348
1349
1350
1351
# File 'lib/gr.rb', line 1345

def contour(x, y, h, z, major_h)
  # TODO: check: Arrays have incorrect length or dimension.
  nx = x.length
  ny = y.length
  nh = h.length
  super(nx, ny, nh, x, y, h, z, major_h)
end

.contourf(*args) ⇒ Object

(Plot) Draw a filled contour plot.


1370
1371
1372
1373
1374
1375
1376
# File 'lib/gr.rb', line 1370

def contourf(x, y, h, z, major_h)
  # TODO: check: Arrays have incorrect length or dimension.
  nx = x.length
  ny = y.length
  nh = h.length
  super(nx, ny, nh, x, y, h, z, major_h)
end

.copysegwsObject


# File 'lib/gr.rb', line 918

.createsegObject


# File 'lib/gr.rb', line 916

.deactivatewsObject

Deactivate the specified workstation.

Parameters:

  • workstation_id (Integer)

    A workstation identifier.


# File 'lib/gr.rb', line 160

.delaunay(x, y) ⇒ Integer

Returns:

  • (Integer)

1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
# File 'lib/gr.rb', line 1840

def delaunay(x, y)
  # Feel free to make a pull request if you catch a mistake
  # or you have an idea to improve it.
  npoints = equal_length(x, y)
  triangles = Fiddle::Pointer.malloc(Fiddle::SIZEOF_INTPTR_T)
  dim = 3
  n_tri = inquiry_int do |ntri|
    super(npoints, x, y, ntri, triangles.ref)
  end
  if n_tri > 0
    tri = triangles.to_str(dim * n_tri * Fiddle::SIZEOF_INT).unpack('l*') # Int32
    # Ruby  : 0-based indexing
    # Julia : 1-based indexing
    tri = tri.each_slice(dim).to_a
    [n_tri, tri]
  else
    0
  end
end

.destroycontextObject


# File 'lib/gr.rb', line 1835

.drawarcObject

Draw a circular or elliptical arc covering the specified rectangle.

The resulting arc begins at `a1` and ends at `a2` degrees. Angles are interpreted such that 0 degrees is at the 3 o'clock position. The center of the arc is the center of the given rectangle.

Parameters:

  • xmin (Numeric)

    Lower left edge of the rectangle

  • xmax (Numeric)

    Lower right edge of the rectangle

  • ymin (Numeric)

    Upper left edge of the rectangle

  • ymax (Numeric)

    Upper right edge of the rectangle

  • a1 (Numeric)

    The start angle

  • a2 (Numeric)

    The end angle


# File 'lib/gr.rb', line 1605

.drawarrowObject

Draw an arrow between two points.

Different arrow styles (angles between arrow tail and wing, optionally filled heads, double headed arrows) are available and can be set with the `setarrowstyle` function.

Parameters:

  • x1 (Numeric)

    Starting point of the arrow (tail)

  • y1 (Numeric)

    Starting point of the arrow (tail)

  • x2 (Numeric)

    Head of the arrow

  • y2 (Numeric)

    Head of the arrow


# File 'lib/gr.rb', line 1689

.drawgraphicsInteger

Returns:

  • (Integer)

# File 'lib/gr.rb', line 1788

.drawimage(xmin, xmax, ymin, ymax, width, height, data, model = 0) ⇒ Object

Draw an image into a given rectangular area.

The points (`xmin`, `ymin`) and (`xmax`, `ymax`) are world coordinates defining diagonally opposite corner points of a rectangle. This rectangle is divided into `width` by `height` cells. The two-dimensional array `data` specifies colors for each cell.

Parameters:

  • xmin (Numeric)

    First corner point of the rectangle

  • ymin (Numeric)

    First corner point of the rectangle

  • xmax (Numeric)

    Second corner point of the rectangle

  • ymax (Numeric)

    Second corner point of the rectangle

  • width (Integer)

    The width and the height of the image

  • height (Integer)

    The width and the height of the image

  • data (Array, NArray)

    An array of color values dimensioned `width` by `height`

  • model (Integer) (defaults to: 0)

    Color model ( default = 0 ) The available color models are:

    • 0 : MODEL_RGB - AABBGGRR

    • 1 : MODEL_HSV - AAVVSSHH


1734
1735
1736
# File 'lib/gr.rb', line 1734

def drawimage(xmin, xmax, ymin, ymax, width, height, data, model = 0)
  super(xmin, xmax, ymin, ymax, width, height, uint(data), model)
end

.drawpath(points, codes, fill) ⇒ Object

Draw simple and compound outlines consisting of line segments and bezier curves.

Parameters:

  • points (Array, NArray)

    (N, 2) array of (x, y) vertices

  • codes (Array, NArray)

    N-length array of path codes

    • STOP : end the entire path

    • MOVETO : move to the given vertex

    • LINETO : draw a line from the current position to the given vertex

    • CURVE3 : draw a quadratic Bézier curve

    • CURVE4 : draw a cubic Bézier curve

    • CLOSEPOLY : draw a line segment to the start point of the current path

  • fill (Integer)

    A flag indication whether resulting path is to be filled or not


1649
1650
1651
1652
# File 'lib/gr.rb', line 1649

def drawpath(points, codes, fill)
  len = codes.length
  super(len, points, uint8(codes), fill)
end

.drawrectObject

Draw a rectangle using the current line attributes.

Parameters:

  • xmin (Numeric)

    Lower left edge of the rectangle

  • xmax (Numeric)

    Lower right edge of the rectangle

  • ymin (Numeric)

    Upper left edge of the rectangle

  • ymax (Numeric)

    Upper right edge of the rectangle


# File 'lib/gr.rb', line 1587

.emergencyclosegksObject


# File 'lib/gr.rb', line 926

.endgraphicsObject


# File 'lib/gr.rb', line 1781

.endprintObject


1562
1563
1564
1565
1566
1567
1568
# File 'lib/gr.rb', line 1562

def ndctowc(x, y)
  inquiry %i[double double] do |px, py|
    px.write_double x
    py.write_double y
    super(px, py)
  end
end

.endselectionObject


# File 'lib/gr.rb', line 1809

.fillarcObject

Fill a circular or elliptical arc covering the specified rectangle.

The resulting arc begins at `a1` and ends at `a2` degrees. Angles are interpreted such that 0 degrees is at the 3 o'clock position. The center of the arc is the center of the given rectangle.

Parameters:

  • xmin (Numeric)

    Lower left edge of the rectangle

  • xmax (Numeric)

    Lower right edge of the rectangle

  • ymin (Numeric)

    Upper left edge of the rectangle

  • ymax (Numeric)

    Upper right edge of the rectangle

  • a1 (Numeric)

    The start angle

  • a2 (Numeric)

    The end angle


# File 'lib/gr.rb', line 1620

.fillarea(x, y) ⇒ Object

Allows you to specify a polygonal shape of an area to be filled.

The attributes that control the appearance of fill areas are fill area interior style, fill area style index and fill area color index.

Parameters:

  • x (Array, NArray)

    A list containing the X coordinates

  • y (Array, NArray)

    A list containing the Y coordinates


284
285
286
287
# File 'lib/gr.rb', line 284

def fillarea(x, y)
  n = equal_length(x, y)
  super(n, x, y)
end

.fillrectObject

Draw a filled rectangle using the current fill attributes.

Parameters:

  • xmin (Numeric)

    Lower left edge of the rectangle

  • xmax (Numeric)

    Lower right edge of the rectangle

  • ymin (Numeric)

    Upper left edge of the rectangle

  • ymax (Numeric)

    Upper right edge of the rectangle


# File 'lib/gr.rb', line 1596

.findboundaryObject

Note:

This method uses GRCommons::Fiddley::Function as a callback function. Please read the source code If you have to use it. This method is not sure if it works properly.


# File 'lib/gr.rb', line 2004

.gdp(x, y, primid, datrec) ⇒ Object

Generates a generalized drawing primitive (GDP) of the type you specify, using specified points and any additional information contained in a data record.

Parameters:

  • x (Array, NArray)

    A list containing the X coordinates

  • y (Array, NArray)

    A list containing the Y coordinates

  • primid (Integer)

    Primitive identifier

  • datrec (Array, NArray)

    Primitive data record


404
405
406
407
408
# File 'lib/gr.rb', line 404

def gdp(x, y, primid, datrec)
  n = equal_length(x, y)
  ldr = datrec.length
  super(n, x, y, primid, ldr, int(datrec))
end

.getgraphicsString

Returns:

  • (String)

1784
1785
1786
# File 'lib/gr.rb', line 1784

def getgraphics(*)
  super.to_s
end

.gradient(x, y, z) ⇒ Object

Deprecated.

1886
1887
1888
1889
1890
1891
1892
1893
# File 'lib/gr.rb', line 1886

def gradient(x, y, z)
  # TODO: check: Arrays have incorrect length or dimension.
  nx = x.length
  ny = y.length
  inquiry [{ double: nx * ny }, { double: nx * ny }] do |pu, pv|
    super(nx, ny, x, y, z, pu, pv)
  end
end

.gridObject

Draw a linear and/or logarithmic grid.

Major grid lines correspond to the axes origin and major tick marks whether visible or not. Minor grid lines are drawn at points equal to minor tick marks. Major grid lines are drawn using black lines and minor grid lines are drawn using gray lines.

Parameters:

  • x_tick (Numeric)

    The length in world coordinates of the interval between minor grid lines.

  • y_tick (Numeric)

    The length in world coordinates of the interval between minor grid lines.

  • x_org (Numeric)

    The world coordinates of the origin (point of intersection) of the grid.

  • y_org (Numeric)

    The world coordinates of the origin (point of intersection) of the grid.

  • major_x (Integer)

    Unitless integer values specifying the number of minor grid lines between major grid lines. Values of 0 or 1 imply no grid lines.

  • major_y (Integer)

    Unitless integer values specifying the number of minor grid lines between major grid lines. Values of 0 or 1 imply no grid lines.


# File 'lib/gr.rb', line 1135

.grid3dObject

Draw a linear and/or logarithmic grid.

Major grid lines correspond to the axes origin and major tick marks whether visible or not. Minor grid lines are drawn at points equal to minor tick marks. Major grid lines are drawn using black lines and minor grid lines are drawn using gray lines.

Parameters:

  • x_tick (Numeric)

    The length in world coordinates of the interval between minor grid lines.

  • y_tick (Numeric)

    The length in world coordinates of the interval between minor grid lines.

  • z_tick (Numeric)

    The length in world coordinates of the interval between minor grid lines.

  • x_org (Numeric)

    The world coordinates of the origin (point of intersection) of the grid.

  • y_org (Numeric)

    The world coordinates of the origin (point of intersection) of the grid.

  • z_org (Numeric)

    The world coordinates of the origin (point of intersection) of the grid.

  • major_x (Integer)

    Unitless integer values specifying the number of minor grid lines between major grid lines. Values of 0 or 1 imply no grid lines.

  • major_y (Integer)

    Unitless integer values specifying the number of minor grid lines between major grid lines. Values of 0 or 1 imply no grid lines.

  • major_z (Integer)

    Unitless integer values specifying the number of minor grid lines between major grid lines. Values of 0 or 1 imply no grid lines.


# File 'lib/gr.rb', line 1159

.gridit(xd, yd, zd, nx, ny) ⇒ Object

Interpolate data from arbitrary points at points on a rectangular grid.

Parameters:

  • xd (Array, NArray)

    X coordinates of the input points

  • yd (Array, NArray)

    Y coordinates of the input points

  • zd (Array, NArray)

    values of the points

  • nx (Array, NArray)

    The number of points in X direction for the output grid

  • ny (Array, NArray)

    The number of points in Y direction for the output grid


441
442
443
444
445
446
# File 'lib/gr.rb', line 441

def gridit(xd, yd, zd, nx, ny)
  nd = equal_length(xd, yd, zd)
  inquiry [{ double: nx }, { double: ny }, { double: nx * ny }] do |px, py, pz|
    super(nd, xd, yd, zd, nx, ny, px, py, pz)
  end
end

.heatmap(*args) ⇒ Object

(Plot) Draw a heatmap.


1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
# File 'lib/gr/plot.rb', line 1292

def heatmap(*args)
  # FIXME
  args, kv = format_xyzc(*args)
  _x, _y, z = args
  ysize, xsize = z.shape
  z = z.reshape(xsize, ysize)
  create_plot(:heatmap, kv) do |plt|
    plt.kvs[:xlim] ||= [0.5, xsize + 0.5]
    plt.kvs[:ylim] ||= [0.5, ysize + 0.5]
    plt.args = [[(1..xsize).to_a, (1..ysize).to_a, z, nil, '']]
  end
end

.herrorbars(x, y, e1, e2) ⇒ Object

Draw a standard horizontal error bar graph.

Parameters:

  • x (Array, NArray)

    A list of length N containing the X coordinates

  • y (Array, NArray)

    A list of length N containing the Y coordinates

  • e1 (Array, NArray)

    The absolute values of the lower error bar data

  • e2 (Array, NArray)

    The absolute values of the lower error bar data


1209
1210
1211
1212
# File 'lib/gr.rb', line 1209

def herrorbars(x, y, e1, e2)
  n = equal_length(x, y, e1, e2)
  super(n, x, y, e1, e2)
end

.hexbin(*args) ⇒ Object

(Plot) Draw a hexagon binning plot.


1396
1397
1398
1399
# File 'lib/gr.rb', line 1396

def hexbin(x, y, nbins)
  n = x.length
  super(n, x, y, nbins)
end

.histogram(series, kv = {}) ⇒ Object

(Plot) Draw a histogram.


1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
# File 'lib/gr/plot.rb', line 1419

def histogram(series, kv = {})
  create_plot(:hist, series, kv) do |plt|
    nbins = plt.kvs[:nbins] || 0
    x, y = hist(series, nbins)
    plt.args = if kv[:horizontal]
                 [[y, x, nil, nil, '']]
               else
                 [[x, y, nil, nil, '']]
               end
  end
end

.hold(flag = true) ⇒ Object


1447
1448
1449
1450
# File 'lib/gr/plot.rb', line 1447

def hold(flag = true)
  plt = GR::Plot.last_plot
  plt.kvs.slice(:window, :scale, :xaxis, :yaxis, :zaxis).merge({ ax: flag, clear: !flag })
end

.hsvtorgb(h, s, v) ⇒ Integer

Returns:

  • (Integer)

1463
1464
1465
1466
1467
# File 'lib/gr.rb', line 1463

def hsvtorgb(h, s, v)
  inquiry %i[double double double] do |r, g, b|
    super(h, s, v, r, g, b)
  end
end

.importgraphicsInteger

Returns:

  • (Integer)

# File 'lib/gr.rb', line 1738

.imshow(img, kv = {}) ⇒ Object

(Plot) Draw an image.


1432
1433
1434
1435
1436
1437
# File 'lib/gr/plot.rb', line 1432

def imshow(img, kv = {})
  img = Numo::DFloat.cast(img) # Umm...
  create_plot(:imshow, img, kv) do |plt|
    plt.args = [[nil, nil, img, nil, '']]
  end
end

.initgrObject


# File 'lib/gr.rb', line 98

.inqbboxObject


1815
1816
1817
1818
1819
# File 'lib/gr.rb', line 1815

def inqbbox
  inquiry %i[double double double double] do |*pts|
    super(*pts)
  end
end

.inqbordercolorindObject

Define the color of subsequent path output primitives.

Parameters:

  • color (Integer)

    The border color index (COLOR < 1256)


2137
2138
2139
# File 'lib/gr.rb', line 2137

def inqbordercolorind
  inquiry_int { |pt| super(pt) }
end

.inqborderwidthObject

Define the border width of subsequent path output primitives.

Parameters:

  • width (Numeric)

    The border width scale factor


2127
2128
2129
# File 'lib/gr.rb', line 2127

def inqborderwidth
  inquiry_double { |pt| super(pt) }
end

.inqcharheightNumeric

Gets the current character height.

This function gets the height of text output primitives. Text height is defined as a percentage of the default window. GR uses the default text height of 0.027 (2.7% of the height of the default window).

Returns:

  • (Numeric)

    Text height value


673
674
675
# File 'lib/gr.rb', line 673

def inqcharheight
  inquiry_double { |pt| super(pt) }
end

.inqclipxformObject


2143
2144
2145
# File 'lib/gr.rb', line 2143

def inqclipxform
  inquiry_int { |pt| super(pt) }
end

.inqcolor(color) ⇒ Object


1454
1455
1456
1457
1458
# File 'lib/gr.rb', line 1454

def inqcolor(color)
  inquiry_int do |rgb|
    super(color, rgb)
  end
end

.inqcolorfromrgbInteger

Returns:

  • (Integer)

1463
1464
1465
1466
1467
# File 'lib/gr.rb', line 1463

def hsvtorgb(h, s, v)
  inquiry %i[double double double] do |r, g, b|
    super(h, s, v, r, g, b)
  end
end

.inqcolormapObject

inqcolormap


1411
1412
1413
# File 'lib/gr.rb', line 1411

def inqcolormap
  inquiry_int { |pt| super(pt) }
end

.inqcolormapindsArray

Inquire the color index range of the current colormap.

Returns:

  • (Array)

    first_color_ind The color index of the first color, last_color_ind The color index of the last color


1446
1447
1448
1449
1450
# File 'lib/gr.rb', line 1446

def inqcolormapinds
  inquiry %i[int int] do |first_color_ind, last_color_ind|
    super(first_color_ind, last_color_ind)
  end
end

.inqdspsizeArray

Get the current display size.

Depending on the current workstation type, the current display might be the primary screen (e.g. when using gksqt or GKSTerm) or a purely virtual display (e.g. when using Cairo). When a high DPI screen is used as the current display, width and height will be in logical pixels.

Returns:

  • (Array)

    meter_width, meter_height, width, height


112
113
114
115
116
# File 'lib/gr.rb', line 112

def inqdspsize
  inquiry %i[double double int int] do |*pts|
    super(*pts)
  end
end

.inqfillcolorindInteger

Returns the current fill area color index.

This function gets the color of fill area output primitives.

Returns:

  • (Integer)

    The text color index (COLOR < 1256)


781
782
783
# File 'lib/gr.rb', line 781

def inqfillcolorind
  inquiry_int { |pt| super(pt) }
end

.inqfillintstyleInteger

Returns the fill area interior style to be used for fill areas.

This function gets the currently set fill style.

Returns:

  • (Integer)

    The currently set fill style


740
741
742
# File 'lib/gr.rb', line 740

def inqfillintstyle
  inquiry_int { |pt| super(pt) }
end

.inqfillstyleInteger

Returns the current fill area color index.

This function gets the color index for PATTERN and HATCH fills.

Returns:

  • (Integer)

    The currently set fill style color index


762
763
764
# File 'lib/gr.rb', line 762

def inqfillstyle
  inquiry_int { |pt| super(pt) }
end

.inqlinecolorindObject

Define the color of subsequent polyline output primitives.

Parameters:

  • color (Integer)

    The polyline color index (COLOR < 1256)


491
492
493
# File 'lib/gr.rb', line 491

def inqlinecolorind
  inquiry_int { |pt| super(pt) }
end

.inqlinetypeObject

Specify the line style for polylines.

Parameters:

  • style (Integer)

    The polyline line style

    • 1 : LINETYPE_SOLID - Solid line

    • 2 : LINETYPE_DASHED - Dashed line

    • 3 : LINETYPE_DOTTED - Dotted line

    • 4 : LINETYPE_DASHED_DOTTED - Dashed-dotted line

    • -1 : LINETYPE_DASH_2_DOT - Sequence of one dash followed by two dots

    • -2 : LINETYPE_DASH_3_DOT - Sequence of one dash followed by three dots

    • -3 : LINETYPE_LONG_DASH - Sequence of long dashes

    • -4 : LINETYPE_LONG_SHORT_DASH - Sequence of a long dash followed by a short dash

    • -5 : LINETYPE_SPACED_DASH - Sequence of dashes double spaced

    • -6 : LINETYPE_SPACED_DOT - Sequence of dots double spaced

    • -7 : LINETYPE_DOUBLE_DOT - Sequence of pairs of dots

    • -8 : LINETYPE_TRIPLE_DOT - Sequence of groups of three dots


466
467
468
# File 'lib/gr.rb', line 466

def inqlinetype
  inquiry_int { |pt| super(pt) }
end

.inqlinewidthObject

Define the line width of subsequent polyline output primitives.

The line width is calculated as the nominal line width generated on the workstation multiplied by the line width scale factor. This value is mapped by the workstation to the nearest available line width. The default line width is 1.0, or 1 times the line width generated on the graphics device.

Parameters:

  • width (Numeric)

    The polyline line width scale factor


481
482
483
# File 'lib/gr.rb', line 481

def inqlinewidth
  inquiry_double { |pt| super(pt) }
end

.inqmarkercolorindObject

Define the color of subsequent polymarker output primitives.

Parameters:

  • color (Integer)

    The polymarker color index (COLOR < 1256)


567
568
569
# File 'lib/gr.rb', line 567

def inqmarkercolorind
  inquiry_int { |pt| super(pt) }
end

.inqmarkersizeNumeric

Inquire the marker size for polymarkers.

Returns:

  • (Numeric)

    Scale factor applied to the nominal marker size


557
558
559
# File 'lib/gr.rb', line 557

def inqmarkersize
  inquiry_double { |pt| super(pt) }
end

.inqmarkertypeObject

Specifiy the marker type for polymarkers.

Polymarkers appear centered over their specified coordinates.

Parameters:

  • style (Integer)

    The polymarker marker type

    • 1 : MARKERTYPE_DOT - Smallest displayable dot

    • 2 : MARKERTYPE_PLUS - Plus sign

    • 3 : MARKERTYPE_ASTERISK - Asterisk

    • 4 : MARKERTYPE_CIRCLE - Hollow circle

    • 5 : MARKERTYPE_DIAGONAL_CROSS - Diagonal cross

    • -1 : MARKERTYPE_SOLID_CIRCLE - Filled circle

    • -2 : MARKERTYPE_TRIANGLE_UP - Hollow triangle pointing upward

    • -3 : MARKERTYPE_SOLID_TRI_UP - Filled triangle pointing upward

    • -4 : MARKERTYPE_TRIANGLE_DOWN - Hollow triangle pointing downward

    • -5 : MARKERTYPE_SOLID_TRI_DOWN - Filled triangle pointing downward

    • -6 : MARKERTYPE_SQUARE - Hollow square

    • -7 : MARKERTYPE_SOLID_SQUARE - Filled square

    • -8 : MARKERTYPE_BOWTIE - Hollow bowtie

    • -9 : MARKERTYPE_SOLID_BOWTIE - Filled bowtie

    • -10 : MARKERTYPE_HGLASS - Hollow hourglass

    • -11 : MARKERTYPE_SOLID_HGLASS - Filled hourglass

    • -12 : MARKERTYPE_DIAMOND - Hollow diamond

    • -13 : MARKERTYPE_SOLID_DIAMOND - Filled Diamond

    • -14 : MARKERTYPE_STAR - Hollow star

    • -15 : MARKERTYPE_SOLID_STAR - Filled Star

    • -16 : MARKERTYPE_TRI_UP_DOWN - Hollow triangles pointing up and down overlaid

    • -17 : MARKERTYPE_SOLID_TRI_RIGHT - Filled triangle point right

    • -18 : MARKERTYPE_SOLID_TRI_LEFT - Filled triangle pointing left

    • -19 : MARKERTYPE_HOLLOW PLUS - Hollow plus sign

    • -20 : MARKERTYPE_SOLID PLUS - Solid plus sign

    • -21 : MARKERTYPE_PENTAGON - Pentagon

    • -22 : MARKERTYPE_HEXAGON - Hexagon

    • -23 : MARKERTYPE_HEPTAGON - Heptagon

    • -24 : MARKERTYPE_OCTAGON - Octagon

    • -25 : MARKERTYPE_STAR_4 - 4-pointed star

    • -26 : MARKERTYPE_STAR_5 - 5-pointed star (pentagram)

    • -27 : MARKERTYPE_STAR_6 - 6-pointed star (hexagram)

    • -28 : MARKERTYPE_STAR_7 - 7-pointed star (heptagram)

    • -29 : MARKERTYPE_STAR_8 - 8-pointed star (octagram)

    • -30 : MARKERTYPE_VLINE - verical line

    • -31 : MARKERTYPE_HLINE - horizontal line

    • -32 : MARKERTYPE_OMARK - o-mark


540
541
542
# File 'lib/gr.rb', line 540

def inqmarkertype
  inquiry_int { |pt| super(pt) }
end

.inqmathtex(x, y, string) ⇒ Object

inqmathtex


1801
1802
1803
1804
1805
# File 'lib/gr.rb', line 1801

def inqmathtex(x, y, string)
  inquiry [{ double: 4 }, { double: 4 }] do |tbx, tby|
    super(x, y, string, tbx, tby)
  end
end

.inqorthographicprojectionObject

Return the camera position, up vector and focus point.


2217
2218
2219
2220
2221
# File 'lib/gr.rb', line 2217

def inqorthographicprojection
  inquiry([:double] * 6) do |*pts|
    super(*pts)
  end
end

.inqperspectiveprojectionObject

Return the parameters for the perspective projection.


2174
2175
2176
2177
2178
# File 'lib/gr.rb', line 2174

def inqperspectiveprojection
  inquiry %i[double double double] do |*pts|
    super(*pts)
  end
end

.inqprojectiontypeObject

Return the projection type.


2158
2159
2160
# File 'lib/gr.rb', line 2158

def inqprojectiontype
  inquiry_int { |pt| super(pt) }
end

.inqregenflagsInteger

Returns:

  • (Integer)

# File 'lib/gr.rb', line 1826

.inqresamplemethodInteger

Inquire the resample method used for `drawimage`

Returns:

  • (Integer)

    Resample flag


2069
2070
2071
2072
2073
# File 'lib/gr.rb', line 2069

def inqresamplemethod
  inquiry_uint do |resample_method|
    super(resample_method)
  end
end

.inqscaleObject

inqscale


981
982
983
# File 'lib/gr.rb', line 981

def inqscale
  inquiry_int { |pt| super(pt) }
end

.inqscalefactors3dObject

Returns the scale factors for each axis.


2265
2266
2267
2268
2269
# File 'lib/gr.rb', line 2265

def inqscalefactors3d
  inquiry %i[double double double] do |*opts|
    super(*opts)
  end
end

.inqspaceInteger

Set the abstract Z-space used for mapping three-dimensional output primitives into the current world coordinate space.

`setspace` establishes the limits of an abstract Z-axis and defines the angles for rotation and for the viewing angle (tilt) of a simulated three-dimensional graph, used for mapping corresponding output primitives into the current window. These settings are used for all subsequent three-dimensional output primitives until other values are specified. Angles of rotation and viewing angle must be specified between 0° and 90°.

Parameters:

  • zmin (Numeric)

    Minimum value for the Z-axis.

  • zmax (Numeric)

    Maximum value for the Z-axis.

  • rotation (Integer)

    Angle for the rotation of the X axis, in degrees.

  • tilt (integer)

    Viewing angle of the Z axis in degrees.

Returns:

  • (Integer)

949
950
951
952
953
# File 'lib/gr.rb', line 949

def inqspace
  inquiry %i[double double int int] do |*pts|
    super(*pts)
  end
end

.inqtext(x, y, string) ⇒ Object

Draw a text at position `x`, `y` using the current text attributes.

The values for `x` and `y` are in normalized device coordinates. The attributes that control the appearance of text are text font and precision, character expansion factor, character spacing, text color index, character height, character up vector, text path and text alignment.

Parameters:

  • x (Numeric)

    The X coordinate of starting position of the text string

  • y (Numeric)

    The Y coordinate of starting position of the text string

  • string (String)

    The text to be drawn


270
271
272
273
274
# File 'lib/gr.rb', line 270

def inqtext(x, y, string)
  inquiry [{ double: 4 }, { double: 4 }] do |tbx, tby|
    super(x, y, string, tbx, tby)
  end
end

.inqtext3d(x, y, z, string, axis) ⇒ Object


2290
2291
2292
2293
2294
# File 'lib/gr.rb', line 2290

def inqtext3d(x, y, z, string, axis)
  inquiry [{ double: 16 }, { double: 16 }] do |tbx, tby|
    super(x, y, z, string, axis, tbx, tby)
  end
end

.inqtextcolorindInteger

Gets the current text color index.

This function gets the color of text output primitives.

Returns:

  • (Integer)

    color The text color index (COLOR < 1256)


652
653
654
# File 'lib/gr.rb', line 652

def inqtextcolorind
  inquiry_int { |pt| super(pt) }
end

.inqtextencodingObject


2298
2299
2300
2301
2302
# File 'lib/gr.rb', line 2298

def inqtextencoding
  inquiry_int do |encoding|
    super(encoding)
  end
end

.inqtextext(x, y, string) ⇒ Object

inqtextext


1043
1044
1045
1046
1047
# File 'lib/gr.rb', line 1043

def inqtextext(x, y, string)
  inquiry [{ double: 4 }, { double: 4 }] do |tbx, tby|
    super(x, y, string, tbx, tby)
  end
end

.inqtransformationparametersObject

Return the camera position, up vector and focus point.


2197
2198
2199
2200
2201
# File 'lib/gr.rb', line 2197

def inqtransformationparameters
  inquiry([:double] * 9) do |*pts|
    super(*pts)
  end
end

.inqviewportObject

inqviewport


845
846
847
848
849
# File 'lib/gr.rb', line 845

def inqviewport
  inquiry %i[double double double double] do |*pts|
    super(*pts)
  end
end

.inqwindowObject

inqwindow


818
819
820
821
822
# File 'lib/gr.rb', line 818

def inqwindow
  inquiry %i[double double double double] do |*pts|
    super(*pts)
  end
end

.inqwindow3dObject

Return the three dimensional window.


2248
2249
2250
2251
2252
# File 'lib/gr.rb', line 2248

def inqwindow3d
  inquiry([:double] * 6) do |*pts|
    super(*pts)
  end
end

.interp2(x, y, z, xq, yq, method, extrapval) ⇒ Object

Interpolation in two dimensions using one of four different methods. The input points are located on a grid, described by `x`, `y` and `z`. The target grid ist described by `xq` and `yq`. Returns an array containing the resulting z-values.

flatten

Parameters:

  • x (Array, NArray)

    Array containing the input grid's x-values

  • y (Array, NArray)

    Array containing the input grid's y-values

  • z (Array, NArray)

    Array containing the input grid's z-values (number of values: nx * ny)

  • xq (Array, NArray)

    Array containing the target grid's x-values

  • yq (Array, NArray)

    Array containing the target grid's y-values

  • method (Integer)

    Used method for interpolation The available methods for interpolation are the following:

    • 0 : INTERP2_NEAREST - Nearest neighbour interpolation

    • 1 : INTERP2_LINEAR - Linear interpolation

    • 2 : INTERP_2_SPLINE - Interpolation using natural cubic splines

    • 3 : INTERP2_CUBIC - Cubic interpolation

  • extrapval (Numeric)

    The extrapolation value


1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
# File 'lib/gr.rb', line 1935

def interp2(x, y, z, xq, yq, method, extrapval)
  nx = x.length
  ny = y.length
  # nz = z.length
  nxq = xq.length
  nyq = yq.length
  inquiry(double: nxq * nyq) do |zq|
    super(nx, ny, x, y, z, nxq, nyq, xq, yq, zq, method, extrapval)
  end
end

.isosurface(v, kv = {}) ⇒ Object

(Plot) Draw an isosurface.


1440
1441
1442
1443
1444
1445
# File 'lib/gr/plot.rb', line 1440

def isosurface(v, kv = {})
  v = Numo::DFloat.cast(v) # Umm...
  create_plot(:isosurface, v, kv) do |plt|
    plt.args = [[nil, nil, v, nil, '']]
  end
end

.loadfont(str) ⇒ Object

Load a font file from a given filename.

This function loads a font from a given absolute filename and assigns a font index to it. To use the loaded font call `gr_settextfontprec` using the resulting font index and precision 3.

Parameters:

  • filename (String)

    The absolute filename of the font


2312
2313
2314
2315
2316
# File 'lib/gr.rb', line 2312

def loadfont(str)
  inquiry_int do |font|
    super(str, font)
  end
end

.mathtexObject

Generate a character string starting at the given location. Strings can be defined to create mathematical symbols and Greek letters using LaTeX syntax.

Parameters:

  • x (Numeric)

    X coordinate of the starting position of the text string

  • y (Numeric)

    Y coordinate of the starting position of the text string

  • string (String)

    The text string to be drawn


# File 'lib/gr.rb', line 1791

.moveselectionObject


# File 'lib/gr.rb', line 1811

.ndctowc(x, y) ⇒ Object


1562
1563
1564
1565
1566
1567
1568
# File 'lib/gr.rb', line 1562

def ndctowc(x, y)
  inquiry %i[double double] do |px, py|
    px.write_double x
    py.write_double y
    super(px, py)
  end
end

.nonuniformcellarray(x, y, dimx, dimy, color) ⇒ Object

Display a two dimensional color index array with nonuniform cell sizes.

The values for `x` and `y` are in world coordinates. `x` must contain `dimx` + 1 elements and `y` must contain `dimy` + 1 elements. The elements i and i+1 are respectively the edges of the i-th cell in X and Y direction.

Parameters:

  • x (Array, NArray)

    X coordinates of the cell edges

  • y (Array, NArray)

    Y coordinates of the cell edges

  • dimx (Integer)

    X dimension of the color index array

  • dimy (Integer)

    Y dimension of the color index array

  • color (Array, NArray)

    Color index array

Raises:

  • (ArgumentError)

320
321
322
323
324
325
326
# File 'lib/gr.rb', line 320

def nonuniformcellarray(x, y, dimx, dimy, color)
  raise ArgumentError unless x.length == dimx + 1 && y.length == dimy + 1

  nx = dimx == x.length ? -dimx : dimx
  ny = dimy == y.length ? -dimy : dimy
  super(x, y, nx, ny, 1, 1, dimx, dimy, int(color))
end

.nonuniformpolarcellarray(phi, r, ncol, nrow, color) ⇒ Object

Display a two dimensional color index array mapped to a disk using polar coordinates with nonuniform cell sizes.

The mapping of the polar coordinates and the drawing is performed simialr to `gr_polarcellarray` with the difference that the individual cell sizes are specified allowing nonuniform sized cells.

Parameters:

  • phi (Array, NArray)

    array with the angles of the disk sector in degrees

  • r (Array, NArray)

    array with the radii of the disk in world coordinates

  • ncol (Integer)

    total number of columns in the color index array and the angle array

  • nrow (Integer)

    total number of rows in the color index array and the radii array

  • color (Integer)

    color index array

Raises:

  • (ArgumentError)

387
388
389
390
391
392
393
# File 'lib/gr.rb', line 387

def nonuniformpolarcellarray(phi, r, ncol, nrow, color)
  raise ArgumentError unless (ncol..(ncol + 1)).include?(phi.length) && (nrow..(nrow + 1)).include?(r.length)

  dimphi = ncol == phi.length ? -ncol : ncol
  dimr = nrow == r.length ? -nrow : nrow
  super(0, 0, phi, r, dimphi, dimr, 1, 1, ncol, nrow, int(color))
end

.nonuniformpolarheatmap(*args) ⇒ Object

(Plot) Draw a nonuniformpolarheatmap.


1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
# File 'lib/gr/plot.rb', line 1321

def nonuniformpolarheatmap(*args)
  # FIXME
  args, kv = format_xyzc(*args)
  _x, _y, z = args
  ysize, xsize = z.shape
  z = z.reshape(xsize, ysize)
  create_plot(:nonuniformpolarheatmap, kv) do |plt|
    plt.kvs[:xlim] ||= [0.5, xsize + 0.5]
    plt.kvs[:ylim] ||= [0.5, ysize + 0.5]
    plt.args = [[(1..xsize).to_a, (1..ysize).to_a, z, nil, '']]
  end
end

.opengksObject


# File 'lib/gr.rb', line 100

.openwsObject

Open a graphical workstation.

Parameters:

  • workstation_id (Integer)

    A workstation identifier.

  • connection (String)

    A connection identifier.

  • workstation_type (Integer)

    The desired workstation type.

    • 5 : Workstation Independent Segment Storage

    • 41 : Windows GDI

    • 61 - 64 : PostScript (b/w, color)

    • 101, 102 : Portable Document Format (plain, compressed)

    • 210 - 213 : X Windows

    • 214 : Sun Raster file (RF)

    • 215, 218 : Graphics Interchange Format (GIF87, GIF89)

    • 216 : Motif User Interface Language (UIL)

    • 320 : Windows Bitmap (BMP)

    • 321 : JPEG image file

    • 322 : Portable Network Graphics file (PNG)

    • 323 : Tagged Image File Format (TIFF)

    • 370 : Xfig vector graphics file

    • 371 : Gtk

    • 380 : wxWidgets

    • 381 : Qt4

    • 382 : Scaleable Vector Graphics (SVG)

    • 390 : Windows Metafile

    • 400 : Quartz

    • 410 : Socket driver

    • 415 : 0MQ driver

    • 420 : OpenGL


# File 'lib/gr.rb', line 118

.panzoom(x, y, zoom) ⇒ Object

panzoom


2011
2012
2013
2014
2015
# File 'lib/gr.rb', line 2011

def panzoom(x, y, zoom)
  inquiry %i[double double double double] do |xmin, xmax, ymin, ymax|
    super(x, y, zoom, zoom, xmin, xmax, ymin, ymax)
  end
end

.path(x, y, codes) ⇒ Object

Draw paths using the given vertices and path codes.

See gr-framework.org/python-gr.html#gr.path for more details.

Parameters:

  • x (Array, NArray)

    A list containing the X coordinates

  • y (Array, NArray)

    A list containing the Y coordinates

  • codes (String)

    A list containing the path codes The following path codes are recognized:

    • M, m

      • moveto x, y

    • L, l

      • lineto x, y

    • Q, q

      • quadratic Bézier x1, x2 y1, y2

    • C, c

      • cubic Bézier x1, x2, x3 y1, y2, y3

    • A, a

      • arc rx, a1, reserved ry, a2, reserved

    • Z

      • close path -

    • s

      • stroke -

    • s

      • close path and stroke -

    • f

      • close path and fill -

    • F

      • close path, fill and stroke -


2104
2105
2106
2107
# File 'lib/gr.rb', line 2104

def path(x, y, codes)
  n = equal_length(x, y)
  super(n, x, y, codes)
end

.plot(*args) ⇒ Object

(Plot) Draw one or more line plots.


1262
1263
1264
# File 'lib/gr/plot.rb', line 1262

def plot(*args)
  create_plot(:line, *args)
end

.plot3(*args) ⇒ Object

(Plot) Draw one or more three-dimensional line plots.


1379
1380
1381
# File 'lib/gr/plot.rb', line 1379

def plot3(*args)
  create_plot(:plot3, *args)
end

.polar(*args) ⇒ Object

(Plot)


1369
1370
1371
# File 'lib/gr/plot.rb', line 1369

def polar(*args)
  create_plot(:polar, *args)
end

.polarcellarray(x_org, y_org, phimin, phimax, rmin, rmax, dimphi, dimr, color) ⇒ Object

Display a two dimensional color index array mapped to a disk using polar coordinates.

The two dimensional color index array is mapped to the resulting image by interpreting the X-axis of the array as the angle and the Y-axis as the raidus. The center point of the resulting disk is located at `xorg`, `yorg` and the radius of the disk is `rmax`.

The additional parameters to the function can be used to further control the mapping from polar to cartesian coordinates.

If `rmin` is greater than 0 the input data is mapped to a punctured disk (or annulus) with an inner radius of `rmin` and an outer radius `rmax`. If `rmin` is greater than `rmax` the Y-axis of the array is reversed.

The parameter `phimin` and `phimax` can be used to map the data to a sector of the (punctured) disk starting at `phimin` and ending at `phimax`. If `phimin` is greater than `phimax` the X-axis is reversed. The visible sector is the one starting in mathematically positive direction (counterclockwise) at the smaller angle and ending at the larger angle. An example of the four possible options can be found below:

  • phimin phimax Result

  • 90 270 Left half visible, mapped counterclockwise

  • 270 90 Left half visible, mapped clockwise

  • -90 90 Right half visible, mapped counterclockwise

  • 90 -90 Right half visible, mapped clockwise

Parameters:

  • x_org (Numeric)

    X coordinate of the disk center in world coordinates

  • y_org (Numeric)

    Y coordinate of the disk center in world coordinates

  • phimin (Numeric)

    start angle of the disk sector in degrees

  • phimax (Numeric)

    end angle of the disk sector in degrees

  • rmin (Numeric)

    inner radius of the punctured disk in world coordinates

  • rmax (Numeric)

    outer radius of the punctured disk in world coordinates

  • dimphi (Integer)

    Phi (X) dimension of the color index array

  • dimr (Integer)

    iR (Y) dimension of the color index array

  • color (Array, NArray)

    Color index array


370
371
372
# File 'lib/gr.rb', line 370

def polarcellarray(x_org, y_org, phimin, phimax, rmin, rmax, dimphi, dimr, color)
  super(x_org, y_org, phimin, phimax, rmin, rmax, dimphi, dimr, 1, 1, dimphi, dimr, int(color))
end

.polarheatmap(*args) ⇒ Object

(Plot) Draw a polarheatmap.


1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
# File 'lib/gr/plot.rb', line 1306

def polarheatmap(*args)
  d = args.shift
  # FIXME
  z = Numo::DFloat.cast(d)
  raise 'expected 2-D array' unless z.ndim == 2

  create_plot(:polarheatmap, z, *args) do |plt|
    width, height = z.shape
    plt.kvs[:xlim] ||= [0.5, width + 0.5]
    plt.kvs[:ylim] ||= [0.5, height + 0.5]
    plt.args = [[(1..width).to_a, (1..height).to_a, z, nil, '']]
  end
end

.polarhistogram(x, kv = {}) ⇒ Object

(Plot)


1282
1283
1284
1285
1286
1287
1288
1289
# File 'lib/gr/plot.rb', line 1282

def polarhistogram(x, kv = {})
  plt = GR::Plot.new(x, kv)
  plt.kvs[:kind] = :polarhist
  nbins = plt.kvs[:nbins] || 0
  x, y = hist(x, nbins)
  plt.args = [[x, y, nil, nil, '']]
  plt.plot_data
end

.polyline(x, y, linewidth = nil, line_z = nil) ⇒ Object

Draw a polyline using the current line attributes, starting from the first data point and ending at the last data point.

The values for x and y are in world coordinates. The attributes that control the appearance of a polyline are linetype, linewidth and color index.

Parameters:

  • x (Array, NArray)

    A list containing the X coordinates

  • y (Array, NArray)

    A list containing the Y coordinates

  • linewidth (Array, NArray, Numeric) (defaults to: nil)

    A list containing the line widths

  • line_z (Array, NArray, Numeric) (defaults to: nil)

    A list to be converted to colors


190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# File 'lib/gr.rb', line 190

def polyline(x, y, linewidth = nil, line_z = nil)
  # GR.jl - Multiple dispatch
  n = equal_length(x, y)
  if linewidth.nil? && line_z.nil?
    super(n, x, y)
  else
    linewidth ||= GR.inqlinewidth
    linewidth = if linewidth.is_a?(Numeric)
                  Array.new(n, linewidth * 100)
                else
                  raise ArgumentError if n != linewidth.length

                  linewidth.map { |i| (100 * i).round }
                end
    line_z ||= GR.inqcolor(989) # FIXME
    color = if line_z.is_a?(Numeric)
              Array.new(n, line_z)
            else
              raise ArgumentError if n != line_z.length

              to_rgb_color(line_z)
            end
    z = linewidth.to_a.zip(color).flatten # to_a : NArray
    gdp(x, y, GDP_DRAW_LINES, z)
  end
end

.polyline3d(x, y, z) ⇒ Object

Draw a 3D curve using the current line attributes, starting from the first data point and ending at the last data point.

The values for `x`, `y` and `z` are in world coordinates. The attributes that control the appearance of a polyline are linetype, linewidth and color index.

Parameters:

  • x (Array, NArray)

    A list of length N containing the X coordinates

  • y (Array, NArray)

    A list of length N containing the Y coordinates

  • z (Array, NArray)

    A list of length N containing the Z coordinates


1225
1226
1227
1228
# File 'lib/gr.rb', line 1225

def polyline3d(x, y, z)
  n = equal_length(x, y, z)
  super(n, x, y, z)
end

.polymarker(x, y, markersize = nil, marker_z = nil) ⇒ Object

Draw marker symbols centered at the given data points.

The values for x and y are in world coordinates. The attributes that control the appearance of a polymarker are marker type, marker size scale factor and color index.

Parameters:

  • x (Array, NArray)

    A list containing the X coordinates

  • y (Array, NArray)

    A list containing the Y coordinates

  • markersize (Array, NArray, Numeric) (defaults to: nil)

    A list containing the marker sizes

  • marker_z (Array, NArray, Numeric) (defaults to: nil)

    A list to be converted to colors


228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# File 'lib/gr.rb', line 228

def polymarker(x, y, markersize = nil, marker_z = nil)
  # GR.jl - Multiple dispatch
  n = equal_length(x, y)
  if markersize.nil? && marker_z.nil?
    super(n, x, y)
  else
    markersize ||= GR.inqmarkersize
    markersize = if markersize.is_a?(Numeric)
                   Array.new(n, markersize * 100)
                 else
                   raise ArgumentError if n != markersize.length

                   markersize.map { |i| (100 * i).round }
                 end
    marker_z ||= GR.inqcolor(989) # FIXME
    color = if marker_z.is_a?(Numeric)
              Array.new(n, marker_z)
            else
              raise ArgumentError if n != marker_z.length

              to_rgb_color(marker_z)
            end
    z = markersize.to_a.zip(color).flatten # to_a : NArray
    gdp(x, y, GDP_DRAW_MARKERS, z)
  end
end

.polymarker3d(x, y, z) ⇒ Object

Draw marker symbols centered at the given 3D data points.

The values for `x`, `y` and `z` are in world coordinates. The attributes that control the appearance of a polymarker are marker type, marker size scale factor and color index.

Parameters:

  • x (Array, NArray)

    A list of length N containing the X coordinates

  • y (Array, NArray)

    A list of length N containing the Y coordinates

  • z (Array, NArray)

    A list of length N containing the Z coordinates


1240
1241
1242
1243
# File 'lib/gr.rb', line 1240

def polymarker3d(x, y, z)
  n = equal_length(x, y, z)
  super(n, x, y, z)
end

.precisionNumeric

Returns:

  • (Numeric)

# File 'lib/gr.rb', line 1821

.quiver(x, y, u, v, color) ⇒ Object

Draw a quiver plot on a grid of nx*ny points.

The values for `x` and `y` are in world coordinates.

Parameters:

  • nx (Integer)

    The number of points along the x-axis of the grid

  • ny (Integer)

    The number of points along the y-axis of the grid

  • x (Array, NArray)

    A list containing the X coordinates

  • y (Array, NArray)

    A list containing the Y coordinates

  • u (Array, NArray)

    A list containing the U component for each point on the grid

  • v (Array, NArray)

    A list containing the V component for each point on the grid

  • color (Integer)

    A bool to indicate whether or not the arrows should be colored using the current colormap


1909
1910
1911
1912
1913
1914
# File 'lib/gr.rb', line 1909

def quiver(x, y, u, v, color)
  # TODO: check: Arrays have incorrect length or dimension.
  nx = x.length
  ny = y.length
  super(nx, ny, x, y, u, v, (color ? 1 : 0))
end

.readimage(path) ⇒ Integer

Returns:

  • (Integer)

1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
# File 'lib/gr.rb', line 1703

def readimage(path)
  # Feel free to make a pull request if you catch a mistake
  # or you have an idea to improve it.
  data = Fiddle::Pointer.malloc(Fiddle::SIZEOF_INTPTR_T)
  w, h = inquiry [:int, :int] do |width, height|
    # data is a pointer of a pointer
    super(path, width, height, data.ref)
  end
  d = data.to_str(w * h * Fiddle::SIZEOF_INT).unpack('L*') # UInt32
  [w, h, d]
end

.redrawsegwsObject


# File 'lib/gr.rb', line 920

.reducepoints(xd, yd, n) ⇒ Object

Reduces the number of points of the x and y array.

Parameters:

  • n (Integer)

    The requested number of points

  • x (Array, NArray)

    The x value array

  • y (Array, NArray)

    The y value array


1866
1867
1868
1869
1870
1871
1872
# File 'lib/gr.rb', line 1866

def reducepoints(xd, yd, n)
  nd = equal_length(xd, yd)
  inquiry [{ double: n }, { double: n }] do |x, y|
    # Different from Julia. x, y are initialized zero.
    super(nd, xd, yd, n, x, y)
  end
end

.resizeselectionObject


1815
1816
1817
1818
1819
# File 'lib/gr.rb', line 1815

def inqbbox
  inquiry %i[double double double double] do |*pts|
    super(*pts)
  end
end

.restorestateObject


# File 'lib/gr.rb', line 1831

.savefig(filename, kv = {}) ⇒ Object

(Plot) Save the current figure to a file.


1476
1477
1478
1479
1480
1481
1482
# File 'lib/gr/plot.rb', line 1476

def savefig(filename, kv = {})
  GR.beginprint(filename)
  plt = GR::Plot.last_plot
  plt.kvs.merge!(kv)
  plt.plot_data(false)
  GR.endprint
end

.savestateObject


# File 'lib/gr.rb', line 1829

.scatter(*args) ⇒ Object

(Plot) Draw one or more scatter plots.


1272
1273
1274
# File 'lib/gr/plot.rb', line 1272

def scatter(*args)
  create_plot(:scatter, *args)
end

.scatter3(*args) ⇒ Object

(Plot) Draw one or more three-dimensional scatter plots.


1384
1385
1386
# File 'lib/gr/plot.rb', line 1384

def scatter3(*args)
  create_plot(:scatter3, *args)
end

.selectclipxformObject


2143
2144
2145
# File 'lib/gr.rb', line 2143

def inqclipxform
  inquiry_int { |pt| super(pt) }
end

.selectcontextObject


# File 'lib/gr.rb', line 1833

.selntranObject

`selntran` selects a predefined transformation from world coordinates to normalized device coordinates.

Parameters:

  • transform (Integer)

    A normalization transformation number.

    • 0 : Selects the identity transformation in which both the window and

      viewport have the range of 0 to 1
      
    • >= 1 : Selects a normalization transformation as defined by `setwindow`

      and `setviewport`
      

# File 'lib/gr.rb', line 851

.setarrowsizeObject

Set the arrow size to be used for subsequent arrow commands.

`setarrowsize` defines the arrow size for subsequent arrow primitives. The default arrow size is 1.

Parameters:

  • size (Numeric)

    The arrow size to be used


# File 'lib/gr.rb', line 1680

.setarrowstyleObject

Set the arrow style to be used for subsequent arrow commands.

`setarrowstyle` defines the arrow style for subsequent arrow primitives.

Parameters:

  • style (Integer)

    The arrow style to be used The default arrow style is 1.

    • 1 : simple, single-ended

    • 2 : simple, single-ended, acute head

    • 3 : hollow, single-ended

    • 4 : filled, single-ended

    • 5 : triangle, single-ended

    • 6 : filled triangle, single-ended

    • 7 : kite, single-ended

    • 8 : filled kite, single-ended

    • 9 : simple, double-ended

    • 10 : simple, double-ended, acute head

    • 11 : hollow, double-ended

    • 12 : filled, double-ended

    • 13 : triangle, double-ended

    • 14 : filled triangle, double-ended

    • 15 : kite, double-ended

    • 16 : filled kite, double-ended

    • 17 : double line, single-ended

    • 18 : double line, double-ended


# File 'lib/gr.rb', line 1654

.setbordercolorindObject

Define the color of subsequent path output primitives.

Parameters:

  • color (Integer)

    The border color index (COLOR < 1256)


2137
2138
2139
# File 'lib/gr.rb', line 2137

def inqbordercolorind
  inquiry_int { |pt| super(pt) }
end

.setborderwidthObject

Define the border width of subsequent path output primitives.

Parameters:

  • width (Numeric)

    The border width scale factor


2127
2128
2129
# File 'lib/gr.rb', line 2127

def inqborderwidth
  inquiry_double { |pt| super(pt) }
end

.setcharexpanObject

Set the current character expansion factor (width to height ratio).

`setcharexpan` defines the width of subsequent text output primitives. The expansion factor alters the width of the generated characters, but not their height. The default text expansion factor is 1, or one times the normal width-to-height ratio of the text.

Parameters:

  • factor (Numeric)

    Text expansion factor applied to the nominal text width-to-height ratio


# File 'lib/gr.rb', line 623

.setcharheightObject

Set the current character height.

`setcharheight` defines the height of subsequent text output primitives. Text height is defined as a percentage of the default window. GR uses the default text height of 0.027 (2.7% of the height of the default window).

Parameters:

  • height (Numeric)

    Text height value


# File 'lib/gr.rb', line 656

.setcharspaceObject


# File 'lib/gr.rb', line 635

.setcharupObject

Set the current character text angle up vector.

`setcharup` defines the vertical rotation of subsequent text output primitives. The text up vector is initially set to (0, 1), horizontal to the baseline.

Parameters:

  • ux (Numeric)

    X coordinate of the text up vector

  • uy (Numeric)

    Y coordinate of the text up vector


# File 'lib/gr.rb', line 677

.setclipObject

Set the clipping indicator.

  • 0 : Clipping is off. Data outside of the window will be drawn.

  • 1 : Clipping is on. Data outside of the window will not be drawn.

`setclip` enables or disables clipping of the image drawn in the current window. Clipping is defined as the removal of those portions of the graph that lie outside of the defined viewport. If clipping is on, GR does not draw generated output primitives past the viewport boundaries. If clipping is off, primitives may exceed the viewport boundaries, and they will be drawn to the edge of the workstation window. By default, clipping is on.

Parameters:

  • indicator (Integer)

    An indicator specifying whether clipping is on or off.


# File 'lib/gr.rb', line 862

.setcolormapObject

Set the currently used colormap.

Using a negative index will use the reverse of the selected colormap.

Parameters:

  • index (Integer)

    Colormap index


# File 'lib/gr.rb', line 1401

.setcolormapfromrgb(r, g, b, positions: nil) ⇒ Object

Note:

GR.jl and python-gr have different APIsI

Define a colormap by a list of RGB colors. This function defines a colormap using the n given color intensities. If less than 256 colors are provided the colors intensities are linear interpolated. If x is NULL the given color values are evenly distributed in the colormap. Otherwise the normalized value of x defines the position of the color in the colormap.

Parameters:

  • r (Array, NArray)

    The red intensities in range 0.0 to 1.0

  • g (Array, NArray)

    The green intensities in range 0.0 to 1.0

  • b (Array, NArray)

    The blue intensities in range 0.0 to 1.0

  • positions (Array, NArray) (defaults to: nil)

    The positions of the corresponding color in the resulting colormap or nil. The values of positions must increase monotonically from 0.0 to 1.0. If positions is nil the given colors are evenly distributed in the colormap.


1432
1433
1434
1435
1436
1437
1438
1439
1440
# File 'lib/gr.rb', line 1432

def setcolormapfromrgb(r, g, b, positions: nil)
  n = equal_length(r, g, b)
  if positions.nil?
    positions = Fiddle::NULL
  elsif positions.length != n
    raise
  end
  super(n, r, g, b, positions)
end

.setcolorrepObject

Redefine an existing color index representation by specifying an RGB color triplet.

Parameters:

  • index (Integer)

    Color index in the range 0 to 1256

  • red (Numeric)

    Red intensity in the range 0.0 to 1.0

  • green (Numeric)

    Green intensity in the range 0.0 to 1.0

  • blue (Numeric)

    Blue intensity in the range 0.0 to 1.0


# File 'lib/gr.rb', line 785

.setcoordxform(mat) ⇒ Object

Change the coordinate transformation according to the given matrix.

Parameters:

  • mat (Array, NArray)

    2D transformation matrix


1766
1767
1768
1769
1770
# File 'lib/gr.rb', line 1766

def setcoordxform(mat)
  raise if mat.size != 6

  super(mat)
end

.setfillcolorindObject

Sets the current fill area color index.

`setfillcolorind` defines the color of subsequent fill area output primitives. GR uses the default foreground color (black=1) for the default fill area color index.

Parameters:

  • color (Integer)

    The text color index (COLOR < 1256)


# File 'lib/gr.rb', line 766

.setfillintstyleObject

Set the fill area interior style to be used for fill areas.

`setfillintstyle` defines the interior style for subsequent fill area output primitives. The default interior style is HOLLOW.

Parameters:

  • style (Integer)

    The style of fill to be used

    • 0 : HOLLOW - No filling. Just draw the bounding polyline

    • 1 : SOLID - Fill the interior of the polygon using the fill color index

    • 2 : PATTERN - Fill the interior of the polygon using the style index as a pattern index

    • 3 : HATCH - Fill the interior of the polygon using the style index as a cross-hatched style

    • 4 : SOLID_WITH_BORDER - Fill the interior of the polygon using the fill color index and draw the bounding polyline


# File 'lib/gr.rb', line 721

.setfillstyleObject

Sets the fill style to be used for subsequent fill areas.

`setfillstyle` specifies an index when PATTERN fill or HATCH fill is requested by the`setfillintstyle` function. If the interior style is set to PATTERN, the fill style index points to a device-independent pattern table. If interior style is set to HATCH the fill style index indicates different hatch styles. If HOLLOW or SOLID is specified for the interior style, the fill style index is unused.

Parameters:

  • index (Integer)

    The fill style index to be used


# File 'lib/gr.rb', line 744

.setlinecolorindObject

Define the color of subsequent polyline output primitives.

Parameters:

  • color (Integer)

    The polyline color index (COLOR < 1256)


491
492
493
# File 'lib/gr.rb', line 491

def inqlinecolorind
  inquiry_int { |pt| super(pt) }
end

.setlinetypeObject

Specify the line style for polylines.

Parameters:

  • style (Integer)

    The polyline line style

    • 1 : LINETYPE_SOLID - Solid line

    • 2 : LINETYPE_DASHED - Dashed line

    • 3 : LINETYPE_DOTTED - Dotted line

    • 4 : LINETYPE_DASHED_DOTTED - Dashed-dotted line

    • -1 : LINETYPE_DASH_2_DOT - Sequence of one dash followed by two dots

    • -2 : LINETYPE_DASH_3_DOT - Sequence of one dash followed by three dots

    • -3 : LINETYPE_LONG_DASH - Sequence of long dashes

    • -4 : LINETYPE_LONG_SHORT_DASH - Sequence of a long dash followed by a short dash

    • -5 : LINETYPE_SPACED_DASH - Sequence of dashes double spaced

    • -6 : LINETYPE_SPACED_DOT - Sequence of dots double spaced

    • -7 : LINETYPE_DOUBLE_DOT - Sequence of pairs of dots

    • -8 : LINETYPE_TRIPLE_DOT - Sequence of groups of three dots


466
467
468
# File 'lib/gr.rb', line 466

def inqlinetype
  inquiry_int { |pt| super(pt) }
end

.setlinewidthObject

Define the line width of subsequent polyline output primitives.

The line width is calculated as the nominal line width generated on the workstation multiplied by the line width scale factor. This value is mapped by the workstation to the nearest available line width. The default line width is 1.0, or 1 times the line width generated on the graphics device.

Parameters:

  • width (Numeric)

    The polyline line width scale factor


481
482
483
# File 'lib/gr.rb', line 481

def inqlinewidth
  inquiry_double { |pt| super(pt) }
end

.setmarkercolorindObject

Define the color of subsequent polymarker output primitives.

Parameters:

  • color (Integer)

    The polymarker color index (COLOR < 1256)


567
568
569
# File 'lib/gr.rb', line 567

def inqmarkercolorind
  inquiry_int { |pt| super(pt) }
end

.setmarkersizeObject

Specify the marker size for polymarkers.

The polymarker size is calculated as the nominal size generated on the graphics device multiplied by the marker size scale factor.

Parameters:

  • size (Numeric)

    Scale factor applied to the nominal marker size


# File 'lib/gr.rb', line 544

.setmarkertypeObject

Specifiy the marker type for polymarkers.

Polymarkers appear centered over their specified coordinates.

Parameters:

  • style (Integer)

    The polymarker marker type

    • 1 : MARKERTYPE_DOT - Smallest displayable dot

    • 2 : MARKERTYPE_PLUS - Plus sign

    • 3 : MARKERTYPE_ASTERISK - Asterisk

    • 4 : MARKERTYPE_CIRCLE - Hollow circle

    • 5 : MARKERTYPE_DIAGONAL_CROSS - Diagonal cross

    • -1 : MARKERTYPE_SOLID_CIRCLE - Filled circle

    • -2 : MARKERTYPE_TRIANGLE_UP - Hollow triangle pointing upward

    • -3 : MARKERTYPE_SOLID_TRI_UP - Filled triangle pointing upward

    • -4 : MARKERTYPE_TRIANGLE_DOWN - Hollow triangle pointing downward

    • -5 : MARKERTYPE_SOLID_TRI_DOWN - Filled triangle pointing downward

    • -6 : MARKERTYPE_SQUARE - Hollow square

    • -7 : MARKERTYPE_SOLID_SQUARE - Filled square

    • -8 : MARKERTYPE_BOWTIE - Hollow bowtie

    • -9 : MARKERTYPE_SOLID_BOWTIE - Filled bowtie

    • -10 : MARKERTYPE_HGLASS - Hollow hourglass

    • -11 : MARKERTYPE_SOLID_HGLASS - Filled hourglass

    • -12 : MARKERTYPE_DIAMOND - Hollow diamond

    • -13 : MARKERTYPE_SOLID_DIAMOND - Filled Diamond

    • -14 : MARKERTYPE_STAR - Hollow star

    • -15 : MARKERTYPE_SOLID_STAR - Filled Star

    • -16 : MARKERTYPE_TRI_UP_DOWN - Hollow triangles pointing up and down overlaid

    • -17 : MARKERTYPE_SOLID_TRI_RIGHT - Filled triangle point right

    • -18 : MARKERTYPE_SOLID_TRI_LEFT - Filled triangle pointing left

    • -19 : MARKERTYPE_HOLLOW PLUS - Hollow plus sign

    • -20 : MARKERTYPE_SOLID PLUS - Solid plus sign

    • -21 : MARKERTYPE_PENTAGON - Pentagon

    • -22 : MARKERTYPE_HEXAGON - Hexagon

    • -23 : MARKERTYPE_HEPTAGON - Heptagon

    • -24 : MARKERTYPE_OCTAGON - Octagon

    • -25 : MARKERTYPE_STAR_4 - 4-pointed star

    • -26 : MARKERTYPE_STAR_5 - 5-pointed star (pentagram)

    • -27 : MARKERTYPE_STAR_6 - 6-pointed star (hexagram)

    • -28 : MARKERTYPE_STAR_7 - 7-pointed star (heptagram)

    • -29 : MARKERTYPE_STAR_8 - 8-pointed star (octagram)

    • -30 : MARKERTYPE_VLINE - verical line

    • -31 : MARKERTYPE_HLINE - horizontal line

    • -32 : MARKERTYPE_OMARK - o-mark


540
541
542
# File 'lib/gr.rb', line 540

def inqmarkertype
  inquiry_int { |pt| super(pt) }
end

.setorthographicprojectionObject

Set parameters for orthographic transformation. Switches projection type to orthographic.

Parameters:

  • left (Numeric)

    xmin of the volume in worldcoordinates

  • right (Numeric)

    xmax of volume in worldcoordinates

  • bottom (Numeric)

    ymin of volume in worldcoordinates

  • top (Numeric)

    ymax of volume in worldcoordinates

  • near_plane (Numeric)

    distance to near clipping plane

  • far_plane (Numeric)

    distance to far clipping plane


# File 'lib/gr.rb', line 2203

.setperspectiveprojectionObject

Set the far and near clipping plane for perspective projection and the vertical field ov view. Switches projection type to perspective.

Parameters:

  • near_plane (Numeric)

    distance to near clipping plane

  • far_plane (Numeric)

    distance to far clipping plane

  • fov (Numeric)

    vertical field of view, input must be between 0 and 180 degrees


# File 'lib/gr.rb', line 2162

.setprojectiontypeObject

Set the projection type with this flag.

Parameters:

  • flag (Integer)

    projection type The available options are:

    • 0 : GR_PROJECTION_DEFAULT - default

    • 1 : GR_PROJECTION_ORTHOGRAPHIC - orthographic

    • 2 : GR_PROJECTION_PERSPECTIVE - perspective


# File 'lib/gr.rb', line 2147

.setregenflagsObject


# File 'lib/gr.rb', line 1824

.setresamplemethodObject

Set the resample method used for `drawimage`.

Parameters:

  • resample_method (Integer)

    the new resample method. The available options are:

    • 0x00000000 : RESAMPLE_DEFAULT

      • default

    • 0x01010101 : RESAMPLE_NEAREST

      • nearest neighbour

    • 0x02020202 : RESAMPLE_LINEAR

      • linear

    • 0x03030303 : RESAMPLE_LANCZOS

      • Lanczos

    Alternatively, combinations of these methods can be selected for horizontal or vertical upsampling or downsampling:

    • 0x00000000 : UPSAMPLE_VERTICAL_DEFAULT

      • default for vertical upsampling

    • 0x00000000 : UPSAMPLE_HORIZONTAL_DEFAULT

      • default for horizontal upsampling

    • 0x00000000 : DOWNSAMPLE_VERTICAL_DEFAULT

      • default for vertical downsampling

    • 0x00000000 : DOWNSAMPLE_HORIZONTAL_DEFAULT

      • default for horizontal downsampling

    • 0x00000001 : UPSAMPLE_VERTICAL_NEAREST

      • nearest neighbor for vertical upsampling

    • 0x00000100 : UPSAMPLE_HORIZONTAL_NEAREST

      • nearest neighbor for horizontal upsampling

    • 0x00010000 : DOWNSAMPLE_VERTICAL_NEAREST

      • nearest neighbor for vertical downsampling

    • 0x01000000 : DOWNSAMPLE_HORIZONTAL_NEAREST

      • nearest neighbor for horizontal downsampling

    • 0x00000002 : UPSAMPLE_VERTICAL_LINEAR

      • linear for vertical upsampling

    • 0x00000200 : UPSAMPLE_HORIZONTAL_LINEAR

      • linear for horizontal upsampling

    • 0x00020000 : DOWNSAMPLE_VERTICAL_LINEAR

      • linear for vertical downsampling

    • 0x02000000 : DOWNSAMPLE_HORIZONTAL_LINEAR

      • linear for horizontal downsampling

    • 0x00000003 : UPSAMPLE_VERTICAL_LANCZOS

      • lanczos for vertical upsampling

    • 0x00000300 : UPSAMPLE_HORIZONTAL_LANCZOS

      • lanczos for horizontal upsampling

    • 0x00030000 : DOWNSAMPLE_VERTICAL_LANCZOS

      • lanczos for vertical downsampling

    • 0x03000000 : DOWNSAMPLE_HORIZONTAL_LANCZOS

      • lanczos for horizontal downsampling


# File 'lib/gr.rb', line 2017

.setscaleInteger

`setscale` sets the type of transformation to be used for subsequent GR output primitives.

`setscale` defines the current transformation according to the given scale specification which may be or'ed together using any of the above options. GR uses these options for all subsequent output primitives until another value is provided. The scale options are used to transform points from an abstract logarithmic or semi-logarithmic coordinate system, which may be flipped along each axis, into the world coordinate system.

Note: When applying a logarithmic transformation to a specific axis, the system assumes that the axes limits are greater than zero.

Parameters:

  • options (Integer)

    Scale specification

    • 1 : OPTION_X_LOG - Logarithmic X-axis

    • 2 : OPTION_Y_LOG - Logarithmic Y-axis

    • 4 : OPTION_Z_LOG - Logarithmic Z-axis

    • 8 : OPTION_FLIP_X - Flip X-axis

    • 16 : OPTION_FLIP_Y - Flip Y-axis

    • 32 : OPTION_FLIP_Z - Flip Z-axis

Returns:

  • (Integer)

# File 'lib/gr.rb', line 955

.setscalefactors3dObject

Set the scale factor for each axis. A one means no scale. The scaling factors must not be zero. .

Parameters:

  • x_axis_scale (Numeric)

    factor for scaling the x-axis

  • y_axis_scale (Numeric)

    factor for scaling the y-axis

  • z_axis_scale (Numeric)

    factor for scaling the z-axis


# File 'lib/gr.rb', line 2254

.setsegtranObject


# File 'lib/gr.rb', line 922

.setshadowObject

`setshadow` allows drawing of shadows, realized by images painted underneath, and offset from, graphics objects such that the shadow mimics the effect of a light source cast on the graphics objects.

Parameters:

  • offsetx (Numeric)

    An x-offset, which specifies how far in the horizontal direction the shadow is offset from the object

  • offsety (Numeric)

    A y-offset, which specifies how far in the vertical direction the shadow is offset from the object

  • blur (Numeric)

    A blur value, which specifies whether the object has a hard or a diffuse edge


# File 'lib/gr.rb', line 1741

.setspaceInteger

Set the abstract Z-space used for mapping three-dimensional output primitives into the current world coordinate space.

`setspace` establishes the limits of an abstract Z-axis and defines the angles for rotation and for the viewing angle (tilt) of a simulated three-dimensional graph, used for mapping corresponding output primitives into the current window. These settings are used for all subsequent three-dimensional output primitives until other values are specified. Angles of rotation and viewing angle must be specified between 0° and 90°.

Parameters:

  • zmin (Numeric)

    Minimum value for the Z-axis.

  • zmax (Numeric)

    Maximum value for the Z-axis.

  • rotation (Integer)

    Angle for the rotation of the X axis, in degrees.

  • tilt (integer)

    Viewing angle of the Z axis in degrees.

Returns:

  • (Integer)

949
950
951
952
953
# File 'lib/gr.rb', line 949

def inqspace
  inquiry %i[double double int int] do |*pts|
    super(*pts)
  end
end

.setspace3dObject

Set the camera for orthographic or perspective projection.

The center of the 3d window is used as the focus point and the camera is positioned relative to it, using camera distance, rotation and tilt similar to `setspace`. This function can be used if the user prefers spherical coordinates to setting the camera position directly, but has reduced functionality in comparison to GR.settransformationparameters, GR.setperspectiveprojection and GR.setorthographicprojection.

Parameters:

  • phi (Numeric)

    azimuthal angle of the spherical coordinates

  • theta (Numeric)

    polar angle of the spherical coordinates

  • fov (Numeric)

    vertical field of view (0 or NaN for orthographic projection)

  • camera_distance (Numeric)

    distance between the camera and the focus point (0 or NaN for the radius of the object's smallest bounding sphere)


# File 'lib/gr.rb', line 2271

.settextalignObject

  • 1 : TEXT_HALIGN_LEFT - Left justify

  • 2 : TEXT_HALIGN_CENTER - Center justify

  • 3 : TEXT_HALIGN_RIGHT - Right justify

`settextalign` specifies how the characters in a text primitive will be aligned in horizontal and vertical space. The default text alignment indicates horizontal left alignment and vertical baseline alignment.

Parameters:

  • vertical (Integer)

    Vertical text alignment

    • 0 : TEXT_VALIGN_NORMAL  

    • 1 : TEXT_VALIGN_TOP - Align with the top of the characters

    • 2 : TEXT_VALIGN_CAP - Aligned with the cap of the characters

    • 3 : TEXT_VALIGN_HALF - Aligned with the half line of the characters

    • 4 : TEXT_VALIGN_BASE - Aligned with the base line of the characters

    • 5 : TEXT_VALIGN_BOTTOM - Aligned with the bottom line of the characters


# File 'lib/gr.rb', line 703

.settextcolorindObject

Sets the current text color index.

`settextcolorind` defines the color of subsequent text output primitives. GR uses the default foreground color (black=1) for the default text color index.

Parameters:

  • color (Integer)

    The text color index (COLOR < 1256)


# File 'lib/gr.rb', line 637

.settextencodingObject


2298
2299
2300
2301
2302
# File 'lib/gr.rb', line 2298

def inqtextencoding
  inquiry_int do |encoding|
    super(encoding)
  end
end

.settextfontprecObject

Specify the text font and precision for subsequent text output primitives.

The appearance of a font depends on the text precision value specified. STRING, CHARACTER or STROKE precision allows for a greater or lesser realization of the text primitives, for efficiency. STRING is the default precision for GR and produces the highest quality output using either native font rendering or FreeType. OUTLINE uses the GR path rendering functions to draw individual glyphs and produces the highest quality output.

Parameters:

  • font (Integer)

    Text font

    • 101 : FONT_TIMES_ROMAN

    • 102 : FONT_TIMES_ITALIC

    • 103 : FONT_TIMES_BOLD

    • 104 : FONT_TIMES_BOLDITALIC

    • 105 : FONT_HELVETICA

    • 106 : FONT_HELVETICA_OBLIQUE

    • 107 : FONT_HELVETICA_BOLD

    • 108 : FONT_HELVETICA_BOLDOBLIQUE

    • 109 : FONT_COURIER

    • 110 : FONT_COURIER_OBLIQUE

    • 111 : FONT_COURIER_BOLD

    • 112 : FONT_COURIER_BOLDOBLIQUE

    • 113 : FONT_SYMBOL

    • 114 : FONT_BOOKMAN_LIGHT

    • 115 : FONT_BOOKMAN_LIGHTITALIC

    • 116 : FONT_BOOKMAN_DEMI

    • 117 : FONT_BOOKMAN_DEMIITALIC

    • 118 : FONT_NEWCENTURYSCHLBK_ROMAN

    • 119 : FONT_NEWCENTURYSCHLBK_ITALIC

    • 120 : FONT_NEWCENTURYSCHLBK_BOLD

    • 121 : FONT_NEWCENTURYSCHLBK_BOLDITALIC

    • 122 : FONT_AVANTGARDE_BOOK

    • 123 : FONT_AVANTGARDE_BOOKOBLIQUE

    • 124 : FONT_AVANTGARDE_DEMI

    • 125 : FONT_AVANTGARDE_DEMIOBLIQUE

    • 126 : FONT_PALATINO_ROMAN

    • 127 : FONT_PALATINO_ITALIC

    • 128 : FONT_PALATINO_BOLD

    • 129 : FONT_PALATINO_BOLDITALIC

    • 130 : FONT_ZAPFCHANCERY_MEDIUMITALIC

    • 131 : FONT_ZAPFDINGBATS

    • 232 : FONT_COMPUTERMODERN

    • 233 : FONT_DEJAVUSANS

  • precision (Integer)

    Text precision

    • 0 : TEXT_PRECISION_STRING - String precision (higher quality)

    • 1 : TEXT_PRECISION_CHAR - Character precision (medium quality)

    • 2 : TEXT_PRECISION_STROKE - Stroke precision (lower quality)

    • 3 : TEXT_PRECISION_OUTLINE - Outline precision (highest quality)


# File 'lib/gr.rb', line 571

.settextpathObject

Define the current direction in which subsequent text will be drawn.

Parameters:

  • path (Integer)

    Text path

    • 0 : TEXT_PATH_RIGHT - left-to-right

    • 1 : TEXT_PATH_LEFT - right-to-left

    • 2 : TEXT_PATH_UP - downside-up

    • 3 : TEXT_PATH_DOWN - upside-down


# File 'lib/gr.rb', line 688

.settransformationparametersObject

Method to set the camera position, the upward facing direction and the focus point of the shown volume.

Parameters:

  • camera_pos_x (Numeric)

    x component of the cameraposition in world coordinates

  • camera_pos_y (Numeric)

    y component of the cameraposition in world coordinates

  • camera_pos_z (Numeric)

    z component of the cameraposition in world coordinates

  • up_x (Numeric)

    x component of the up vector

  • up_y (Numeric)

    y component of the up vector

  • up_z (Numeric)

    z component of the up vector

  • focus_point_x (Numeric)

    x component of focus-point inside volume

  • focus_point_y (Numeric)

    y component of focus-point inside volume

  • focus_point_z (Numeric)

    z component of focus-point inside volume


# File 'lib/gr.rb', line 2180

.settransparencyObject

Set the value of the alpha component associated with GR colors.

Parameters:

  • alpha (Numeric)

    An alpha value (0.0 - 1.0)


# File 'lib/gr.rb', line 1756

.setviewportObject

`setviewport` establishes a rectangular subspace of normalized device coordinates.

`setviewport` defines the rectangular portion of the Normalized Device Coordinate (NDC) space to be associated with the specified normalization transformation. The NDC viewport and World Coordinate (WC) window define the normalization transformation through which all output primitives pass. The WC window is mapped onto the rectangular NDC viewport which is, in turn, mapped onto the display surface of the open and active workstation, in device coordinates.

Parameters:

  • xmin (Numeric)

    The left horizontal coordinate of the viewport.

  • xmax (Numeric)

    The right horizontal coordinate of the viewport (0 <= `xmin` < `xmax` <= 1).

  • ymin (Numeric)

    The bottom vertical coordinate of the viewport.

  • ymax (Numeric)

    The top vertical coordinate of the viewport (0 <= `ymin` < `ymax` <= 1).


# File 'lib/gr.rb', line 824

.setwindowObject

`setwindow` establishes a window, or rectangular subspace, of world coordinates to be plotted. If you desire log scaling or mirror-imaging of axes, use the SETSCALE function.

`setwindow` defines the rectangular portion of the World Coordinate space (WC) to be associated with the specified normalization transformation. The WC window and the Normalized Device Coordinates (NDC) viewport define the normalization transformation through which all output primitives are mapped. The WC window is mapped onto the rectangular NDC viewport which is, in turn, mapped onto the display surface of the open and active workstation, in device coordinates. By default, GR uses the range [0,1] x [0,1], in world coordinates, as the normalization transformation window.

Parameters:

  • xmin (Numeric)

    The left horizontal coordinate of the window (`xmin` < `xmax`).

  • xmax (Numeric)

    The right horizontal coordinate of the window.

  • ymin (Numeric)

    The bottom vertical coordinate of the window (`ymin` < `ymax`).

  • ymax (Numeric)

    The top vertical coordinate of the window.


# File 'lib/gr.rb', line 795

.setwindow3dObject

Set the three dimensional window. Only used for perspective and orthographic projection.

Parameters:

  • xmin (Numeric)

    min x-value

  • xmax (Numeric)

    max x-value

  • ymin (Numeric)

    min y-value

  • ymax (Numeric)

    max y-value

  • zmin (Numeric)

    min z-value

  • zmax (Numeric)

    max z-value


# File 'lib/gr.rb', line 2235

.setwsviewportObject

Define the size of the workstation graphics window in meters.

`setwsviewport` places a workstation window on the display of the specified size in meters. This command allows the workstation window to be accurately sized for a display or hardcopy device, and is often useful for sizing graphs for desktop publishing applications.

Parameters:

  • xmin (Numeric)

    The left horizontal coordinate of the workstation viewport.

  • xmax (Numeric)

    The right horizontal coordinate of the workstation viewport.

  • ymin (Numeric)

    The bottom vertical coordinate of the workstation viewport.

  • ymax (Numeric)

    The top vertical coordinate of the workstation viewport.


# File 'lib/gr.rb', line 898

.setwswindowObject

Set the area of the NDC viewport that is to be drawn in the workstation window.

`setwswindow` defines the rectangular area of the Normalized Device Coordinate space to be output to the device. By default, the workstation transformation will map the range [0,1] x [0,1] in NDC onto the largest square on the workstation’s display surface. The aspect ratio of the workstation window is maintained at 1 to 1.

Parameters:

  • xmin (Numeric)

    The left horizontal coordinate of the workstation window.

  • xmax (Numeric)

    The right horizontal coordinate of the workstation window (0 <= `xmin` < `xmax` <= 1).

  • ymin (Numeric)

    The bottom vertical coordinate of the workstation window.

  • ymax (Numeric)

    The top vertical coordinate of the workstation window (0 <= `ymin` < `ymax` <= 1).


# File 'lib/gr.rb', line 878

.shade(*args) ⇒ Object

(Plot)


# File 'lib/gr.rb', line 1953

.shadelines(x, y, dims: [1200, 1200], xform: 1) ⇒ Object

Display a line set as an aggregated and rasterized image.

The values for `x` and `y` are in world coordinates. NaN values can be used to separate the point set into line segments.

Parameters:

  • x (Array, NArray)

    A pointer to the X coordinates

  • y (Array, NArray)

    A pointer to the Y coordinates

  • dims (Array, NArray) (defaults to: [1200, 1200])

    The size of the grid used for rasterization

  • xform (Integer) (defaults to: 1)

    The transformation type used for color mapping The available transformation types are:

    • 0 : XFORM_BOOLEAN - boolean

    • 1 : XFORM_LINEAR - linear

    • 2 : XFORM_LOG - logarithmic

    • 3 : XFORM_LOGLOG - double logarithmic

    • 4 : XFORM_CUBIC - cubic

    • 5 : XFORM_EQUALIZED - histogram equalized


1998
1999
2000
2001
2002
# File 'lib/gr.rb', line 1998

def shadelines(x, y, dims: [1200, 1200], xform: 1)
  n = x.length
  w, h = dims
  super(n, x, y, xform, w, h)
end

.shadepoints(x, y, dims: [1200, 1200], xform: 1) ⇒ Object

Display a point set as a aggregated and rasterized image.

The values for `x` and `y` are in world coordinates.

Parameters:

  • x (Array, NArray)

    A pointer to the X coordinates

  • y (Array, NArray)

    A pointer to the Y coordinates

  • dims (Array, NArray) (defaults to: [1200, 1200])

    The size of the grid used for rasterization

  • xform (Integer) (defaults to: 1)

    The transformation type used for color mapping The available transformation types are:

    • 0 : XFORM_BOOLEAN - boolean

    • 1 : XFORM_LINEAR - linear

    • 2 : XFORM_LOG - logarithmic

    • 3 : XFORM_LOGLOG - double logarithmic

    • 4 : XFORM_CUBIC - cubic

    • 5 : XFORM_EQUALIZED - histogram equalized


1975
1976
1977
1978
1979
# File 'lib/gr.rb', line 1975

def shadepoints(x, y, dims: [1200, 1200], xform: 1)
  n = x.length
  w, h = dims
  super(n, x, y, xform, w, h)
end

.spline(x, y, m, method) ⇒ Object

Generate a cubic spline-fit, starting from the first data point and ending at the last data point.

The values for `x` and `y` are in world coordinates. The attributes that control the appearance of a spline-fit are linetype, linewidth and color index.

Parameters:

  • x (Array, NArray)

    A list containing the X coordinates

  • y (Array, NArray)

    A list containing the Y coordinates

  • m (Integer)

    The number of points in the polygon to be drawn (`m` > len(`x`))

  • method (Integer)

    The smoothing method

    • If `method` is > 0, then a generalized cross-validated smoothing spline is calculated.

    • If `method` is 0, then an interpolating natural cubic spline is calculated.

    • If `method` is < -1, then a cubic B-spline is calculated.


426
427
428
429
# File 'lib/gr.rb', line 426

def spline(x, y, m, method)
  n = equal_length(x, y)
  super(n, x, y, m, method)
end

.stem(*args) ⇒ Object

(Plot) Draw a stem plot.


1277
1278
1279
# File 'lib/gr/plot.rb', line 1277

def stem(*args)
  create_plot(:stem, *args)
end

.step(*args) ⇒ Object

(Plot) Draw one or more step or staircase plots.


1267
1268
1269
# File 'lib/gr/plot.rb', line 1267

def step(*args)
  create_plot(:step, *args)
end

.subplot(nr, nc, p, kv = {}) ⇒ Object

Set current subplot index.


1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
# File 'lib/gr/plot.rb', line 1453

def subplot(nr, nc, p, kv = {})
  xmin = 1
  xmax = 0
  ymin = 1
  ymax = 0
  p = [p] if p.is_a? Integer
  p.each do |i|
    r = (nr - (i - 1) / nc).to_f
    c = ((i - 1) % nc + 1).to_f
    xmin = [xmin, (c - 1) / nc].min
    xmax = [xmax, c / nc].max
    ymin = [ymin, (r - 1) / nr].min
    ymax = [ymax, r / nr].max
  end
  {
    subplot: [xmin, xmax, ymin, ymax],
    # The policy of clearing when p[0]==1 is controversial
    clear: p[0] == 1,
    update: p[-1] == nr * nc
  }.merge kv
end

.surface(*args) ⇒ Object

Note:

`surface` is overwritten by `require gr/plot`. The original method is moved to the underscored name. The yard document will show the method name after evacuation.

Draw a three-dimensional surface plot for the given data points.

`x` and `y` define a grid. `z` is a singly dimensioned array containing at least `nx` * `ny` data points. Z describes the surface height at each point on the grid. Data is ordered as shown in the table:

Parameters:

  • x (Array, NArray)

    A list containing the X coordinates

  • y (Array, NArray)

    A list containing the Y coordinates

  • z (Array, NArray)

    A list of length `len(x)` * `len(y)` or an appropriately dimensioned array containing the Z coordinates

  • option (Integer)

    Surface display option

    • 0 LINES - Use X Y polylines to denote the surface

    • 1 MESH - Use a wire grid to denote the surface

    • 2 FILLED_MESH - Applies an opaque grid to the surface

    • 3 Z_SHADED_MESH - Applies Z-value shading to the surface

    • 4 COLORED_MESH - Applies a colored grid to the surface

    • 5 CELL_ARRAY - Applies a grid of individually-colored cells to the surface

    • 6 SHADED_MESH - Applies light source shading to the 3-D surface


1317
1318
1319
1320
1321
1322
# File 'lib/gr.rb', line 1317

def surface(x, y, z, option)
  # TODO: check: Arrays have incorrect length or dimension.
  nx = x.length
  ny = y.length
  super(nx, ny, x, y, z, option)
end

.textObject

Draw a text at position `x`, `y` using the current text attributes.

The values for `x` and `y` are in normalized device coordinates. The attributes that control the appearance of text are text font and precision, character expansion factor, character spacing, text color index, character height, character up vector, text path and text alignment.

Parameters:

  • x (Numeric)

    The X coordinate of starting position of the text string

  • y (Numeric)

    The Y coordinate of starting position of the text string

  • string (String)

    The text to be drawn


270
271
272
273
274
# File 'lib/gr.rb', line 270

def inqtext(x, y, string)
  inquiry [{ double: 4 }, { double: 4 }] do |tbx, tby|
    super(x, y, string, tbx, tby)
  end
end

.text3dObject


2290
2291
2292
2293
2294
# File 'lib/gr.rb', line 2290

def inqtext3d(x, y, z, string, axis)
  inquiry [{ double: 16 }, { double: 16 }] do |tbx, tby|
    super(x, y, z, string, axis, tbx, tby)
  end
end

.textextInteger

Draw a text at position `x`, `y` using the current text attributes. Strings can be defined to create basic mathematical expressions and Greek letters.

The values for X and Y are in normalized device coordinates. The attributes that control the appearance of text are text font and precision, character expansion factor, character spacing, text color index, character height, character up vector, text path and text alignment.

The character string is interpreted to be a simple mathematical formula. The following notations apply:

Subscripts and superscripts: These are indicated by carets ('^') and underscores ('_'). If the sub/superscript contains more than one character, it must be enclosed in curly braces ('{}').

Fractions are typeset with A '/' B, where A stands for the numerator and B for the denominator.

To include a Greek letter you must specify the corresponding keyword after a backslash ('') character. The text translator produces uppercase or lowercase Greek letters depending on the case of the keyword.

* Α α - alpha
* Β β - beta
* Γ γ - gamma
* Δ δ - delta
* Ε ε - epsilon
* Ζ ζ - zeta
* Η η - eta
* Θ θ - theta
* Ι ι - iota
* Κ κ - kappa
* Λ λ - lambda
* Μ μ - mu
* Ν ν - Nu / v
* Ξ ξ - xi
* Ο ο - omicron
* Π π - pi
* Ρ ρ - rho
* Σ σ - sigma
* Τ τ - tau
* Υ υ - upsilon
* Φ φ - phi
* Χ χ - chi
* Ψ ψ - psi
* Ω ω - omega

Note: `v` is a replacement for `nu` which would conflict with `n` (newline) For more sophisticated mathematical formulas, you should use the `mathtex` function.

Parameters:

  • x (Numeric)

    The X coordinate of starting position of the text string

  • y (Numeric)

    The Y coordinate of starting position of the text string

  • string (String)

    The text to be drawn

Returns:

  • (Integer)

# File 'lib/gr.rb', line 985

.tickNumeric

Returns:

  • (Numeric)

# File 'lib/gr.rb', line 1469

.titles3dObject

Display axis titles just outside of their respective axes.

Parameters:

  • x_title (String)

    The text to be displayed on the X axis

  • x_title (String)

    The text to be displayed on the Y axis

  • x_title (String)

    The text to be displayed on the Z axis


# File 'lib/gr.rb', line 1285

.to_rgb_color(z) ⇒ Array, NArray

Parameters:

  • z (Array, NArray)

Returns:

  • (Array, NArray)

2111
2112
2113
2114
2115
2116
2117
2118
2119
# File 'lib/gr.rb', line 2111

def to_rgb_color(z)
  zmin, zmax = z.minmax
  return Array.new(z.length, 0) if zmax == zmin

  z.map  do |i|
    zi = (i - zmin) / (zmax - zmin).to_f
    inqcolor(1000 + (zi * 255).round)
  end
end

.tricont(*args) ⇒ Object

(Plot) Draw a triangular contour plot.


1353
1354
1355
# File 'lib/gr/plot.rb', line 1353

def tricont(*args)
  create_plot(:tricont, *format_xyzc(*args))
end

.tricontour(x, y, z, levels) ⇒ Object

Draw a contour plot for the given triangle mesh.

Parameters:

  • x (Array, NArray)

    A list containing the X coordinates

  • y (Array, NArray)

    A list containing the Y coordinates

  • z (Array, NArray)

    A list containing the Z coordinates

  • levels (Array, NArray)

    A list of contour levels


1385
1386
1387
1388
1389
# File 'lib/gr.rb', line 1385

def tricontour(x, y, z, levels)
  npoints = x.length # equal_length ?
  nlevels = levels.length
  super(npoints, x, y, z, nlevels, levels)
end

.trisurf(*args) ⇒ Object

(Plot) Draw a triangular surface plot.


1374
1375
1376
# File 'lib/gr/plot.rb', line 1374

def trisurf(*args)
  create_plot(:trisurf, *format_xyzc(*args))
end

.trisurface(x, y, z) ⇒ Object

Draw a triangular surface plot for the given data points.

Parameters:

  • x (Array, NArray)

    A list containing the X coordinates

  • y (Array, NArray)

    A list containing the Y coordinates

  • z (Array, NArray)

    A list containing the Z coordinates


1880
1881
1882
1883
# File 'lib/gr.rb', line 1880

def trisurface(x, y, z)
  n = [x, y, z].map(&:length).min
  super(n, x, y, z)
end

.updategksObject


# File 'lib/gr.rb', line 928

.updatewsObject

Update the specified workstation.


# File 'lib/gr.rb', line 174

.uselinespecInteger

Returns:

  • (Integer)

1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
# File 'lib/gr.rb', line 1840

def delaunay(x, y)
  # Feel free to make a pull request if you catch a mistake
  # or you have an idea to improve it.
  npoints = equal_length(x, y)
  triangles = Fiddle::Pointer.malloc(Fiddle::SIZEOF_INTPTR_T)
  dim = 3
  n_tri = inquiry_int do |ntri|
    super(npoints, x, y, ntri, triangles.ref)
  end
  if n_tri > 0
    tri = triangles.to_str(dim * n_tri * Fiddle::SIZEOF_INT).unpack('l*') # Int32
    # Ruby  : 0-based indexing
    # Julia : 1-based indexing
    tri = tri.each_slice(dim).to_a
    [n_tri, tri]
  else
    0
  end
end

.validaterangeInteger

Returns:

  • (Integer)

1475
1476
1477
1478
1479
1480
1481
# File 'lib/gr.rb', line 1475

def adjustlimits(amin, amax)
  inquiry %i[double double] do |pamin, pamax|
    pamin.write_double amin
    pamax.write_double amax
    super(pamin, pamax)
  end
end

.verrorbars(x, y, e1, e2) ⇒ Object

Draw a standard vertical error bar graph.

Parameters:

  • x (Array, NArray)

    A list of length N containing the X coordinates

  • y (Array, NArray)

    A list of length N containing the Y coordinates

  • e1 (Array, NArray)

    The absolute values of the lower error bar data

  • e2 (Array, NArray)

    The absolute values of the lower error bar data


1197
1198
1199
1200
# File 'lib/gr.rb', line 1197

def verrorbars(x, y, e1, e2)
  n = equal_length(x, y, e1, e2)
  super(n, x, y, e1, e2)
end

.versionString

Returns the combined version strings of the GR runtime.

Returns:

  • (String)

1949
1950
1951
# File 'lib/gr.rb', line 1949

def version
  super.to_s
end

.volume(v, kv = {}) ⇒ Object

(Plot)


1395
1396
1397
1398
1399
# File 'lib/gr/plot.rb', line 1395

def volume(v, kv = {})
  create_plot(:volume, v, kv) do |plt|
    plt.args = [[nil, nil, v, nil, '']]
  end
end

.wc3towc(x, y, z) ⇒ Object


1578
1579
1580
1581
1582
1583
1584
1585
# File 'lib/gr.rb', line 1578

def wc3towc(x, y, z)
  inquiry %i[double double double] do |px, py, pz|
    px.write_double x
    py.write_double y
    pz.write_double z
    super(px, py, pz)
  end
end

.wctondc(x, y) ⇒ Object


1570
1571
1572
1573
1574
1575
1576
# File 'lib/gr.rb', line 1570

def wctondc(x, y)
  inquiry %i[double double] do |px, py|
    px.write_double x
    py.write_double y
    super(px, py)
  end
end

.wireframe(*args) ⇒ Object

(Plot) Draw a three-dimensional wireframe plot.


1358
1359
1360
# File 'lib/gr/plot.rb', line 1358

def wireframe(*args)
  create_plot(:wireframe, *format_xyzc(*args))
end