Class: DNN::Layers::GRUCell

Inherits:
RNNCell
  • Object
show all
Defined in:
lib/dnn/core/layers/rnn_layers.rb

Instance Attribute Summary

Attributes inherited from RNNCell

#trainable

Instance Method Summary collapse

Constructor Details

#initialize(weight, recurrent_weight, bias) ⇒ GRUCell

Returns a new instance of GRUCell.



370
371
372
373
374
375
# File 'lib/dnn/core/layers/rnn_layers.rb', line 370

def initialize(weight, recurrent_weight, bias)
  super(weight, recurrent_weight, bias)
  @update_sigmoid = Layers::Sigmoid.new
  @reset_sigmoid = Layers::Sigmoid.new
  @tanh = Layers::Tanh.new
end

Instance Method Details

#backward(dh2) ⇒ Object



400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# File 'lib/dnn/core/layers/rnn_layers.rb', line 400

def backward(dh2)
  dtanh_h = @tanh.backward_node(dh2 * (1 - @update))
  dh = dh2 * @update

  if @trainable
    dweight_h = @x.transpose.dot(dtanh_h)
    dweight2_h = (@h * @reset).transpose.dot(dtanh_h)
    dbias_h = dtanh_h.sum(0) if @bias
  end
  dx = dtanh_h.dot(@weight_h.transpose)
  dh += dtanh_h.dot(@weight2_h.transpose) * @reset

  dreset = @reset_sigmoid.backward_node(dtanh_h.dot(@weight2_h.transpose) * @h)
  dupdate = @update_sigmoid.backward_node(dh2 * @h - dh2 * @tanh_h)
  da = Xumo::SFloat.hstack([dupdate, dreset])
  if @trainable
    dweight_a = @x.transpose.dot(da)
    dweight2_a = @h.transpose.dot(da)
    dbias_a = da.sum(0) if @bias
  end
  dx += da.dot(@weight_a.transpose)
  dh += da.dot(@weight2_a.transpose)

  if @trainable
    @weight.grad += Xumo::SFloat.hstack([dweight_a, dweight_h])
    @recurrent_weight.grad += Xumo::SFloat.hstack([dweight2_a, dweight2_h])
    @bias.grad += Xumo::SFloat.hstack([dbias_a, dbias_h]) if @bias
  end
  [dx, dh]
end

#forward(x, h) ⇒ Object



377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# File 'lib/dnn/core/layers/rnn_layers.rb', line 377

def forward(x, h)
  @x = x
  @h = h
  num_units = h.shape[1]
  @weight_a = @weight.data[true, 0...(num_units * 2)]
  @weight2_a = @recurrent_weight.data[true, 0...(num_units * 2)]
  a = x.dot(@weight_a) + h.dot(@weight2_a)
  a += @bias.data[0...(num_units * 2)] if @bias
  @update = @update_sigmoid.forward_node(a[true, 0...num_units])
  @reset = @reset_sigmoid.forward_node(a[true, num_units..-1])

  @weight_h = @weight.data[true, (num_units * 2)..-1]
  @weight2_h = @recurrent_weight.data[true, (num_units * 2)..-1]
  @tanh_h = if @bias
              bias_h = @bias.data[(num_units * 2)..-1]
              @tanh.forward_node(x.dot(@weight_h) + (h * @reset).dot(@weight2_h) + bias_h)
            else
              @tanh.forward_node(x.dot(@weight_h) + (h * @reset).dot(@weight2_h))
            end
  h2 = (1 - @update) * @tanh_h + @update * h
  h2
end