Class: DNN::Models::Model
Overview
This class deals with the model of the network.
Direct Known Subclasses
Instance Attribute Summary collapse
-
#last_log ⇒ Object
readonly
Returns the value of attribute last_log.
-
#loss_func ⇒ Object
Returns the value of attribute loss_func.
-
#optimizer ⇒ Object
Returns the value of attribute optimizer.
Class Method Summary collapse
-
.load(file_name) ⇒ DNN::Models::Model
Load marshal model.
Instance Method Summary collapse
-
#add_callback(callback) ⇒ Object
Add callback function.
-
#built? ⇒ Boolean
If model have already been built then return true.
- #call(input_tensors) ⇒ Object
-
#clean_layers ⇒ Object
Clean all layers.
-
#clear_callbacks ⇒ Object
Clear the callback function registered for each event.
-
#copy ⇒ DNN::Models::Model
Return the copy this model.
-
#evaluate(x, y, batch_size: 100) ⇒ Array
Evaluate model and get accuracy and loss of test data.
-
#evaluate_by_iterator(test_iterator, batch_size: 100) ⇒ Array
Evaluate model by iterator.
-
#get_all_params_data ⇒ Array
Get parameter data of all layers.
-
#get_layer(name) ⇒ DNN::Layers::Layer
Get the layer that the model has.
-
#initialize ⇒ Model
constructor
A new instance of Model.
-
#load_params(file_name) ⇒ Object
Load marshal params.
-
#predict(x, use_loss_activation: true) ⇒ Object
Predict data.
-
#predict1(x, use_loss_activation: true) ⇒ Object
Predict one data.
-
#save(file_name) ⇒ Object
Save the model in marshal format.
-
#save_params(file_name) ⇒ Object
Save the params in marshal format.
-
#set_all_params_data(params_data) ⇒ Object
Set parameter data of all layers.
-
#setup(optimizer, loss_func) ⇒ Object
Set optimizer and loss_func to model.
-
#test_on_batch(x, y) ⇒ Array
Evaluate once.
-
#train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object
(also: #fit)
Start training.
-
#train_by_iterator(train_iterator, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object
(also: #fit_by_iterator)
Start training by iterator.
-
#train_on_batch(x, y) ⇒ Float | Numo::SFloat
Training once.
-
#trainable_layers ⇒ Array
Get the all trainable layers.
Methods inherited from Chain
Constructor Details
#initialize ⇒ Model
Returns a new instance of Model.
93 94 95 96 97 98 99 100 |
# File 'lib/dnn/core/models.rb', line 93 def initialize super @optimizer = nil @loss_func = nil @built = false @callbacks = [] @last_log = {} end |
Instance Attribute Details
#last_log ⇒ Object (readonly)
Returns the value of attribute last_log.
81 82 83 |
# File 'lib/dnn/core/models.rb', line 81 def last_log @last_log end |
#loss_func ⇒ Object
Returns the value of attribute loss_func.
80 81 82 |
# File 'lib/dnn/core/models.rb', line 80 def loss_func @loss_func end |
#optimizer ⇒ Object
Returns the value of attribute optimizer.
79 80 81 |
# File 'lib/dnn/core/models.rb', line 79 def optimizer @optimizer end |
Class Method Details
.load(file_name) ⇒ DNN::Models::Model
Load marshal model.
86 87 88 89 90 91 |
# File 'lib/dnn/core/models.rb', line 86 def self.load(file_name) model = self.allocate loader = Loaders::MarshalLoader.new(model) loader.load(file_name) model end |
Instance Method Details
#add_callback(callback) ⇒ Object
Add callback function.
338 339 340 341 |
# File 'lib/dnn/core/models.rb', line 338 def add_callback(callback) callback.model = self @callbacks << callback end |
#built? ⇒ Boolean
Returns If model have already been built then return true.
390 391 392 |
# File 'lib/dnn/core/models.rb', line 390 def built? @built end |
#call(input_tensors) ⇒ Object
102 103 104 105 106 |
# File 'lib/dnn/core/models.rb', line 102 def call(input_tensors) output_tensor = forward(input_tensors) @built = true unless @built output_tensor end |
#clean_layers ⇒ Object
Clean all layers.
395 396 397 398 399 |
# File 'lib/dnn/core/models.rb', line 395 def clean_layers layers.each(&:clean) @loss_func.clean @layers_cache = nil end |
#clear_callbacks ⇒ Object
Clear the callback function registered for each event.
344 345 346 |
# File 'lib/dnn/core/models.rb', line 344 def clear_callbacks @callbacks = [] end |
#copy ⇒ DNN::Models::Model
Return the copy this model.
370 371 372 |
# File 'lib/dnn/core/models.rb', line 370 def copy Marshal.load(Marshal.dump(self)) end |
#evaluate(x, y, batch_size: 100) ⇒ Array
Evaluate model and get accuracy and loss of test data.
249 250 251 252 |
# File 'lib/dnn/core/models.rb', line 249 def evaluate(x, y, batch_size: 100) check_xy_type(x, y) evaluate_by_iterator(Iterator.new(x, y, random: false), batch_size: batch_size) end |
#evaluate_by_iterator(test_iterator, batch_size: 100) ⇒ Array
Evaluate model by iterator.
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# File 'lib/dnn/core/models.rb', line 258 def evaluate_by_iterator(test_iterator, batch_size: 100) num_test_datas = test_iterator.num_datas batch_size = batch_size >= num_test_datas ? num_test_datas : batch_size total_correct = 0 sum_loss = 0 max_steps = (num_test_datas.to_f / batch_size).ceil test_iterator.foreach(batch_size) do |x_batch, y_batch| correct, loss_value = test_on_batch(x_batch, y_batch) total_correct += correct sum_loss += loss_value end mean_loss = sum_loss / max_steps acc = total_correct.to_f / num_test_datas @last_log[:test_loss] = mean_loss @last_log[:test_accuracy] = acc [acc, mean_loss] end |
#get_all_params_data ⇒ Array
Get parameter data of all layers.
403 404 405 406 407 408 409 |
# File 'lib/dnn/core/models.rb', line 403 def get_all_params_data trainable_layers.map do |layer| layer.get_params.to_h do |key, param| [key, param.data] end end end |
#get_layer(name) ⇒ DNN::Layers::Layer
Get the layer that the model has.
383 384 385 386 387 |
# File 'lib/dnn/core/models.rb', line 383 def get_layer(name) layer = instance_variable_get("@#{name}") return layer if layer.is_a?(Layers::Layer) || layer.is_a?(Chain) || layer.is_a?(LayersList) nil end |
#load_params(file_name) ⇒ Object
Load marshal params.
350 351 352 353 |
# File 'lib/dnn/core/models.rb', line 350 def load_params(file_name) loader = Loaders::MarshalLoader.new(self) loader.load(file_name) end |
#predict(x, use_loss_activation: true) ⇒ Object
Predict data.
313 314 315 316 317 318 319 320 321 322 |
# File 'lib/dnn/core/models.rb', line 313 def predict(x, use_loss_activation: true) check_xy_type(x) DNN.learning_phase = false out = call(Tensor.convert(x)) y = out.data if use_loss_activation && @loss_func.class.respond_to?(:activation) y = @loss_func.class.activation(y) end y end |
#predict1(x, use_loss_activation: true) ⇒ Object
Predict one data.
326 327 328 329 330 331 332 333 334 |
# File 'lib/dnn/core/models.rb', line 326 def predict1(x, use_loss_activation: true) check_xy_type(x) input = if x.is_a?(Array) x.map { |v| v.reshape(1, *v.shape) } else x.reshape(1, *x.shape) end predict(input, use_loss_activation: use_loss_activation)[0, false] end |
#save(file_name) ⇒ Object
Save the model in marshal format.
357 358 359 360 |
# File 'lib/dnn/core/models.rb', line 357 def save(file_name) saver = Savers::MarshalSaver.new(self, include_model: true) saver.save(file_name) end |
#save_params(file_name) ⇒ Object
Save the params in marshal format.
364 365 366 367 |
# File 'lib/dnn/core/models.rb', line 364 def save_params(file_name) saver = Savers::MarshalSaver.new(self, include_model: false) saver.save(file_name) end |
#set_all_params_data(params_data) ⇒ Object
Set parameter data of all layers.
413 414 415 416 417 418 419 |
# File 'lib/dnn/core/models.rb', line 413 def set_all_params_data(params_data) trainable_layers.each.with_index do |layer, i| params_data[i].each do |(key, data)| layer.get_params[key].data = data end end end |
#setup(optimizer, loss_func) ⇒ Object
Set optimizer and loss_func to model.
111 112 113 114 115 116 117 118 119 120 |
# File 'lib/dnn/core/models.rb', line 111 def setup(optimizer, loss_func) unless optimizer.is_a?(Optimizers::Optimizer) raise TypeError, "optimizer:#{optimizer.class} is not an instance of DNN::Optimizers::Optimizer class." end unless loss_func.is_a?(Losses::Loss) raise TypeError, "loss_func:#{loss_func.class} is not an instance of DNN::Losses::Loss class." end @optimizer = optimizer @loss_func = loss_func end |
#test_on_batch(x, y) ⇒ Array
Evaluate once.
280 281 282 283 284 285 286 287 288 |
# File 'lib/dnn/core/models.rb', line 280 def test_on_batch(x, y) call_callbacks(:before_test_on_batch) DNN.learning_phase = false out = call(Tensor.convert(x)) correct = accuracy(out.data, y) loss = @loss_func.(out, Tensor.convert(y)) call_callbacks(:after_test_on_batch) [correct, loss.data] end |
#train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object Also known as: fit
Start training. Setup the model before use this method.
132 133 134 135 136 137 138 139 140 141 142 143 144 |
# File 'lib/dnn/core/models.rb', line 132 def train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) check_xy_type(x, y) train_iterator = Iterator.new(x, y) train_by_iterator(train_iterator, epochs, batch_size: batch_size, initial_epoch: initial_epoch, test: test, verbose: verbose) end |
#train_by_iterator(train_iterator, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object Also known as: fit_by_iterator
Start training by iterator. Setup the model before use this method.
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# File 'lib/dnn/core/models.rb', line 157 def train_by_iterator(train_iterator, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) raise DNNError, "The model is not optimizer setup complete." unless @optimizer raise DNNError, "The model is not loss_func setup complete." unless @loss_func num_train_datas = train_iterator.num_datas num_train_datas = num_train_datas / batch_size * batch_size if train_iterator.last_round_down stopped = catch(:stop) do (initial_epoch..epochs).each do |epoch| @last_log[:epoch] = epoch call_callbacks(:before_epoch) puts "【 epoch #{epoch}/#{epochs} 】" if verbose train_iterator.foreach(batch_size) do |x_batch, y_batch, index| train_step_met = train_step(x_batch, y_batch) num_trained_datas = (index + 1) * batch_size num_trained_datas = num_trained_datas > num_train_datas ? num_train_datas : num_trained_datas log = "\r" 40.times do |i| if i < num_trained_datas * 40 / num_train_datas log << "=" elsif i == num_trained_datas * 40 / num_train_datas log << ">" else log << "_" end end log << " #{num_trained_datas}/#{num_train_datas} " log << metrics_to_str(train_step_met) print log if verbose end if test acc, loss = if test.is_a?(Array) evaluate(test[0], test[1], batch_size: batch_size) else evaluate_by_iterator(test, batch_size: batch_size) end print " " + metrics_to_str({ accuracy: acc, test_loss: loss }) if verbose end puts "" if verbose call_callbacks(:after_epoch) end nil end if stopped puts "\n#{stopped}" if verbose end end |
#train_on_batch(x, y) ⇒ Float | Numo::SFloat
Training once. Setup the model before use this method.
229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# File 'lib/dnn/core/models.rb', line 229 def train_on_batch(x, y) raise DNNError, "The model is not optimizer setup complete." unless @optimizer raise DNNError, "The model is not loss_func setup complete." unless @loss_func check_xy_type(x, y) call_callbacks(:before_train_on_batch) DNN.learning_phase = true out = call(Tensor.convert(x)) loss = @loss_func.loss(out, Tensor.convert(y), layers) loss.link.backward(Xumo::SFloat.ones(y[0...1, false].shape[0], 1)) @optimizer.update(get_all_trainable_params) @last_log[:train_loss] = loss.data call_callbacks(:after_train_on_batch) loss.data end |
#trainable_layers ⇒ Array
Get the all trainable layers.
376 377 378 |
# File 'lib/dnn/core/models.rb', line 376 def trainable_layers layers.select { |layer| layer.is_a?(Layers::TrainableLayer) } end |