Class: DNN::Model
- Inherits:
-
Object
- Object
- DNN::Model
- Defined in:
- lib/dnn/core/model.rb
Overview
This class deals with the model of the network.
Instance Attribute Summary collapse
-
#layers ⇒ Object
All layers possessed by the model.
-
#trainable ⇒ Object
Setting false prevents learning of parameters.
Class Method Summary collapse
Instance Method Summary collapse
- #<<(layer) ⇒ Object
- #accurate(x, y, batch_size = 100, &batch_proc) ⇒ Object
- #backward(y) ⇒ Object
- #build(super_model = nil) ⇒ Object
- #compile(optimizer) ⇒ Object
- #compiled? ⇒ Boolean
- #copy ⇒ Object
- #dloss ⇒ Object
- #forward(x, training) ⇒ Object
- #get_all_layers ⇒ Object
- #get_layer(*args) ⇒ Object
- #get_prev_layer(layer) ⇒ Object
-
#initialize ⇒ Model
constructor
A new instance of Model.
- #load_json_params(json_str) ⇒ Object
- #loss(y) ⇒ Object
- #optimizer ⇒ Object
- #params_to_json ⇒ Object
- #predict(x) ⇒ Object
- #predict1(x) ⇒ Object
- #save(file_name) ⇒ Object
- #to_json ⇒ Object
- #train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) ⇒ Object
- #train_on_batch(x, y, &batch_proc) ⇒ Object
- #training? ⇒ Boolean
- #update ⇒ Object
Constructor Details
#initialize ⇒ Model
Returns a new instance of Model.
23 24 25 26 27 28 29 |
# File 'lib/dnn/core/model.rb', line 23 def initialize @layers = [] @trainable = true @optimizer = nil @training = false @compiled = false end |
Instance Attribute Details
#layers ⇒ Object
All layers possessed by the model
8 9 10 |
# File 'lib/dnn/core/model.rb', line 8 def layers @layers end |
#trainable ⇒ Object
Setting false prevents learning of parameters.
9 10 11 |
# File 'lib/dnn/core/model.rb', line 9 def trainable @trainable end |
Class Method Details
.load(file_name) ⇒ Object
11 12 13 |
# File 'lib/dnn/core/model.rb', line 11 def self.load(file_name) Marshal.load(File.binread(file_name)) end |
.load_json(json_str) ⇒ Object
15 16 17 18 19 20 21 |
# File 'lib/dnn/core/model.rb', line 15 def self.load_json(json_str) hash = JSON.parse(json_str, symbolize_names: true) model = self.new model.layers = hash[:layers].map { |hash_layer| Util.load_hash(hash_layer) } model.compile(Util.load_hash(hash[:optimizer])) model end |
Instance Method Details
#<<(layer) ⇒ Object
79 80 81 82 83 84 85 |
# File 'lib/dnn/core/model.rb', line 79 def <<(layer) if !layer.is_a?(Layers::Layer) && !layer.is_a?(Model) raise TypeError.new("layer is not an instance of the DNN::Layers::Layer class or DNN::Model class.") end @layers << layer self end |
#accurate(x, y, batch_size = 100, &batch_proc) ⇒ Object
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# File 'lib/dnn/core/model.rb', line 171 def accurate(x, y, batch_size = 100, &batch_proc) input_data_shape_check(x, y) batch_size = batch_size >= x.shape[0] ? x.shape[0] : batch_size correct = 0 (x.shape[0].to_f / batch_size).ceil.times do |i| x_batch = Xumo::SFloat.zeros(batch_size, *x.shape[1..-1]) y_batch = Xumo::SFloat.zeros(batch_size, *y.shape[1..-1]) batch_size.times do |j| k = i * batch_size + j break if k >= x.shape[0] x_batch[j, false] = x[k, false] y_batch[j, false] = y[k, false] end x_batch, y_batch = batch_proc.call(x_batch, y_batch) if batch_proc out = forward(x_batch, false) batch_size.times do |j| if @layers[-1].shape == [1] correct += 1 if out[j, 0].round == y_batch[j, 0].round else correct += 1 if out[j, true].max_index == y_batch[j, true].max_index end end end correct.to_f / x.shape[0] end |
#backward(y) ⇒ Object
246 247 248 249 250 251 252 |
# File 'lib/dnn/core/model.rb', line 246 def backward(y) dout = y @layers.reverse.each do |layer| dout = layer.backward(dout) end dout end |
#build(super_model = nil) ⇒ Object
98 99 100 101 102 103 |
# File 'lib/dnn/core/model.rb', line 98 def build(super_model = nil) @super_model = super_model @layers.each do |layer| layer.build(self) end end |
#compile(optimizer) ⇒ Object
87 88 89 90 91 92 93 94 95 96 |
# File 'lib/dnn/core/model.rb', line 87 def compile(optimizer) unless optimizer.is_a?(Optimizers::Optimizer) raise TypeError.new("optimizer is not an instance of the DNN::Optimizers::Optimizer class.") end @compiled = true layers_check @optimizer = optimizer build layers_shape_check end |
#compiled? ⇒ Boolean
109 110 111 |
# File 'lib/dnn/core/model.rb', line 109 def compiled? @compiled end |
#copy ⇒ Object
206 207 208 |
# File 'lib/dnn/core/model.rb', line 206 def copy Marshal.load(Marshal.dump(self)) end |
#dloss ⇒ Object
242 243 244 |
# File 'lib/dnn/core/model.rb', line 242 def dloss @layers[-1].dloss end |
#forward(x, training) ⇒ Object
226 227 228 229 230 231 232 233 234 235 236 |
# File 'lib/dnn/core/model.rb', line 226 def forward(x, training) @training = training @layers.each do |layer| x = if layer.is_a?(Layers::Layer) layer.forward(x) elsif layer.is_a?(Model) layer.forward(x, training) end end x end |
#get_all_layers ⇒ Object
220 221 222 223 224 |
# File 'lib/dnn/core/model.rb', line 220 def get_all_layers @layers.map { |layer| layer.is_a?(Model) ? layer.get_all_layers : layer }.flatten end |
#get_layer(*args) ⇒ Object
210 211 212 213 214 215 216 217 218 |
# File 'lib/dnn/core/model.rb', line 210 def get_layer(*args) if args.length == 1 index = args[0] @layers[index] else layer_class, index = args @layers.select { |layer| layer.is_a?(layer_class) }[index] end end |
#get_prev_layer(layer) ⇒ Object
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
# File 'lib/dnn/core/model.rb', line 260 def get_prev_layer(layer) layer_index = @layers.index(layer) prev_layer = if layer_index == 0 if @super_model @super_model.layers[@super_model.layers.index(self) - 1] else self end else @layers[layer_index - 1] end if prev_layer.is_a?(Layers::Layer) prev_layer elsif prev_layer.is_a?(Model) prev_layer.layers[-1] end end |
#load_json_params(json_str) ⇒ Object
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
# File 'lib/dnn/core/model.rb', line 31 def load_json_params(json_str) has_param_layers_params = JSON.parse(json_str, symbolize_names: true) has_param_layers_index = 0 @layers.each do |layer| next unless layer.is_a?(HasParamLayer) hash_params = has_param_layers_params[has_param_layers_index] hash_params.each do |key, (shape, base64_param)| bin = Base64.decode64(base64_param) data = Xumo::SFloat.from_binary(bin).reshape(*shape) if layer.params[key].is_a?(LearningParam) layer.params[key].data = data else layer.params[key] = data end end has_param_layers_index += 1 end end |
#loss(y) ⇒ Object
238 239 240 |
# File 'lib/dnn/core/model.rb', line 238 def loss(y) @layers[-1].loss(y) end |
#optimizer ⇒ Object
105 106 107 |
# File 'lib/dnn/core/model.rb', line 105 def optimizer @optimizer ? @optimizer : @super_model.optimizer end |
#params_to_json ⇒ Object
67 68 69 70 71 72 73 74 75 76 77 |
# File 'lib/dnn/core/model.rb', line 67 def params_to_json has_param_layers = @layers.select { |layer| layer.is_a?(Layers::HasParamLayer) } has_param_layers_params = has_param_layers.map do |layer| layer.params.map { |key, param| param = param.data if param.is_a?(LearningParam) base64_param = Base64.encode64(param.to_binary) [key, [param.shape, base64_param]] }.to_h end JSON.dump(has_param_layers_params) end |
#predict(x) ⇒ Object
197 198 199 200 |
# File 'lib/dnn/core/model.rb', line 197 def predict(x) input_data_shape_check(x) forward(x, false) end |
#predict1(x) ⇒ Object
202 203 204 |
# File 'lib/dnn/core/model.rb', line 202 def predict1(x) predict(Xumo::SFloat.cast([x]))[0, false] end |
#save(file_name) ⇒ Object
50 51 52 53 54 55 56 57 58 59 |
# File 'lib/dnn/core/model.rb', line 50 def save(file_name) marshal = Marshal.dump(self) begin File.binwrite(file_name, marshal) rescue Errno::ENOENT => ex dir_name = file_name.match(%r`(.*)/.+$`)[1] Dir.mkdir(dir_name) File.binwrite(file_name, marshal) end end |
#to_json ⇒ Object
61 62 63 64 65 |
# File 'lib/dnn/core/model.rb', line 61 def to_json hash_layers = @layers.map { |layer| layer.to_hash } hash = {version: VERSION, layers: hash_layers, optimizer: @optimizer.to_hash} JSON.pretty_generate(hash) end |
#train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) ⇒ Object
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# File 'lib/dnn/core/model.rb', line 117 def train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) unless compiled? raise DNN_Error.new("The model is not compiled.") end num_train_data = x.shape[0] (1..epochs).each do |epoch| puts "【 epoch #{epoch}/#{epochs} 】" if verbose (num_train_data.to_f / batch_size).ceil.times do |index| x_batch, y_batch = Util.get_minibatch(x, y, batch_size) loss = train_on_batch(x_batch, y_batch, &batch_proc) if loss.nan? puts "\nloss is nan" if verbose return end num_trained_data = (index + 1) * batch_size num_trained_data = num_trained_data > num_train_data ? num_train_data : num_trained_data log = "\r" 40.times do |i| if i < num_trained_data * 40 / num_train_data log << "=" elsif i == num_trained_data * 40 / num_train_data log << ">" else log << "_" end end log << " #{num_trained_data}/#{num_train_data} loss: #{sprintf('%.8f', loss)}" print log if verbose end if verbose && test acc = accurate(test[0], test[1], batch_size, &batch_proc) print " accurate: #{acc}" end puts "" if verbose epoch_proc.call(epoch) if epoch_proc end end |
#train_on_batch(x, y, &batch_proc) ⇒ Object
160 161 162 163 164 165 166 167 168 169 |
# File 'lib/dnn/core/model.rb', line 160 def train_on_batch(x, y, &batch_proc) input_data_shape_check(x, y) x, y = batch_proc.call(x, y) if batch_proc forward(x, true) loss_value = loss(y) backward(y) dloss update loss_value end |
#training? ⇒ Boolean
113 114 115 |
# File 'lib/dnn/core/model.rb', line 113 def training? @training end |
#update ⇒ Object
254 255 256 257 258 |
# File 'lib/dnn/core/model.rb', line 254 def update @layers.each do |layer| layer.update if @trainable && (layer.is_a?(Layers::HasParamLayer) || layer.is_a?(Model)) end end |