Class: DNN::Layers::Dense

Inherits:
Connection show all
Defined in:
lib/dnn/core/layers.rb

Instance Attribute Summary collapse

Attributes inherited from Connection

#l1_lambda, #l2_lambda

Attributes inherited from HasParamLayer

#params, #trainable

Class Method Summary collapse

Instance Method Summary collapse

Methods inherited from Connection

#dlasso, #dridge, #lasso, #ridge

Methods inherited from HasParamLayer

#build, #update

Methods inherited from Layer

#build, #built?, #prev_layer

Constructor Details

#initialize(num_nodes, weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, l1_lambda: 0, l2_lambda: 0) ⇒ Dense

Returns a new instance of Dense.



183
184
185
186
187
188
189
190
191
# File 'lib/dnn/core/layers.rb', line 183

def initialize(num_nodes,
               weight_initializer: Initializers::RandomNormal.new,
               bias_initializer: Initializers::Zeros.new,
               l1_lambda: 0,
               l2_lambda: 0)
  super(weight_initializer: weight_initializer, bias_initializer: bias_initializer,
        l1_lambda: l1_lambda, l2_lambda: l2_lambda)
  @num_nodes = num_nodes
end

Instance Attribute Details

#num_nodesObject (readonly)

Returns the value of attribute num_nodes.



173
174
175
# File 'lib/dnn/core/layers.rb', line 173

def num_nodes
  @num_nodes
end

Class Method Details

.load_hash(hash) ⇒ Object



175
176
177
178
179
180
181
# File 'lib/dnn/core/layers.rb', line 175

def self.load_hash(hash)
  self.new(hash[:num_nodes],
           weight_initializer: Util.load_hash(hash[:weight_initializer]),
           bias_initializer: Util.load_hash(hash[:bias_initializer]),
           l1_lambda: hash[:l1_lambda],
           l2_lambda: hash[:l2_lambda])
end

Instance Method Details

#backward(dout) ⇒ Object



198
199
200
201
202
203
204
205
206
207
# File 'lib/dnn/core/layers.rb', line 198

def backward(dout)
  @weight.grad = @x.transpose.dot(dout)
  if @l1_lambda > 0
    @weight.grad += dlasso
  elsif @l2_lambda > 0
    @weight.grad += dridge
  end
  @bias.grad = dout.sum(0)
  dout.dot(@weight.data.transpose)
end

#forward(x) ⇒ Object



193
194
195
196
# File 'lib/dnn/core/layers.rb', line 193

def forward(x)
  @x = x
  @x.dot(@weight.data) + @bias.data
end

#shapeObject



209
210
211
# File 'lib/dnn/core/layers.rb', line 209

def shape
  [@num_nodes]
end

#to_hashObject



213
214
215
# File 'lib/dnn/core/layers.rb', line 213

def to_hash
  super({num_nodes: @num_nodes})
end