Class: DNN::Model
- Inherits:
-
Object
- Object
- DNN::Model
- Defined in:
- lib/dnn/core/model.rb
Overview
This class deals with the model of the network.
Instance Attribute Summary collapse
-
#layers ⇒ Object
All layers possessed by the model.
-
#trainable ⇒ Object
Setting false prevents learning of parameters.
Class Method Summary collapse
Instance Method Summary collapse
- #<<(layer) ⇒ Object
- #accurate(x, y, batch_size = 100, &batch_proc) ⇒ Object
- #backward(y) ⇒ Object
- #build(super_model = nil) ⇒ Object
- #compile(optimizer) ⇒ Object
- #compiled? ⇒ Boolean
- #copy ⇒ Object
- #forward(x, training) ⇒ Object
- #get_layer(*args) ⇒ Object
- #get_prev_layer(layer) ⇒ Object
-
#initialize ⇒ Model
constructor
A new instance of Model.
- #load_json_params(json_str) ⇒ Object
- #loss(y) ⇒ Object
- #optimizer ⇒ Object
- #params_to_json ⇒ Object
- #predict(x) ⇒ Object
- #predict1(x) ⇒ Object
- #save(file_name) ⇒ Object
- #to_json ⇒ Object
- #train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) ⇒ Object
- #train_on_batch(x, y, &batch_proc) ⇒ Object
- #training? ⇒ Boolean
- #update ⇒ Object
Constructor Details
#initialize ⇒ Model
Returns a new instance of Model.
22 23 24 25 26 27 28 |
# File 'lib/dnn/core/model.rb', line 22 def initialize @layers = [] @trainable = true @optimizer = nil @training = false @compiled = false end |
Instance Attribute Details
#layers ⇒ Object
All layers possessed by the model
7 8 9 |
# File 'lib/dnn/core/model.rb', line 7 def layers @layers end |
#trainable ⇒ Object
Setting false prevents learning of parameters.
8 9 10 |
# File 'lib/dnn/core/model.rb', line 8 def trainable @trainable end |
Class Method Details
.load(file_name) ⇒ Object
10 11 12 |
# File 'lib/dnn/core/model.rb', line 10 def self.load(file_name) Marshal.load(File.binread(file_name)) end |
.load_json(json_str) ⇒ Object
14 15 16 17 18 19 20 |
# File 'lib/dnn/core/model.rb', line 14 def self.load_json(json_str) hash = JSON.parse(json_str, symbolize_names: true) model = self.new model.layers = hash[:layers].map { |hash_layer| Util.load_hash(hash_layer) } model.compile(Util.load_hash(hash[:optimizer])) model end |
Instance Method Details
#<<(layer) ⇒ Object
78 79 80 81 82 83 84 |
# File 'lib/dnn/core/model.rb', line 78 def <<(layer) if !layer.is_a?(Layers::Layer) && !layer.is_a?(Model) raise TypeError.new("layer is not an instance of the DNN::Layers::Layer class or DNN::Model class.") end @layers << layer self end |
#accurate(x, y, batch_size = 100, &batch_proc) ⇒ Object
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# File 'lib/dnn/core/model.rb', line 169 def accurate(x, y, batch_size = 100, &batch_proc) input_data_shape_check(x, y) batch_size = batch_size >= x.shape[0] ? x.shape[0] : batch_size correct = 0 (x.shape[0].to_f / batch_size).ceil.times do |i| x_batch = Xumo::SFloat.zeros(batch_size, *x.shape[1..-1]) y_batch = Xumo::SFloat.zeros(batch_size, *y.shape[1..-1]) batch_size.times do |j| k = i * batch_size + j break if k >= x.shape[0] x_batch[j, false] = x[k, false] y_batch[j, false] = y[k, false] end x_batch, y_batch = batch_proc.call(x_batch, y_batch) if batch_proc out = forward(x_batch, false) batch_size.times do |j| if @layers[-1].shape == [1] correct += 1 if out[j, 0].round == y_batch[j, 0].round else correct += 1 if out[j, true].max_index == y_batch[j, true].max_index end end end correct.to_f / x.shape[0] end |
#backward(y) ⇒ Object
234 235 236 237 238 239 240 |
# File 'lib/dnn/core/model.rb', line 234 def backward(y) dout = y @layers.reverse.each do |layer| dout = layer.backward(dout) end dout end |
#build(super_model = nil) ⇒ Object
97 98 99 100 101 102 |
# File 'lib/dnn/core/model.rb', line 97 def build(super_model = nil) @super_model = super_model @layers.each do |layer| layer.build(self) end end |
#compile(optimizer) ⇒ Object
86 87 88 89 90 91 92 93 94 95 |
# File 'lib/dnn/core/model.rb', line 86 def compile(optimizer) unless optimizer.is_a?(Optimizers::Optimizer) raise TypeError.new("optimizer is not an instance of the DNN::Optimizers::Optimizer class.") end @compiled = true layers_check @optimizer = optimizer build layers_shape_check end |
#compiled? ⇒ Boolean
108 109 110 |
# File 'lib/dnn/core/model.rb', line 108 def compiled? @compiled end |
#copy ⇒ Object
204 205 206 |
# File 'lib/dnn/core/model.rb', line 204 def copy Marshal.load(Marshal.dump(self)) end |
#forward(x, training) ⇒ Object
218 219 220 221 222 223 224 225 226 227 228 |
# File 'lib/dnn/core/model.rb', line 218 def forward(x, training) @training = training @layers.each do |layer| x = if layer.is_a?(Layers::Layer) layer.forward(x) elsif layer.is_a?(Model) layer.forward(x, training) end end x end |
#get_layer(*args) ⇒ Object
208 209 210 211 212 213 214 215 216 |
# File 'lib/dnn/core/model.rb', line 208 def get_layer(*args) if args.length == 1 index = args[0] @layers[index] else layer_class, index = args @layers.select { |layer| layer.is_a?(layer_class) }[index] end end |
#get_prev_layer(layer) ⇒ Object
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# File 'lib/dnn/core/model.rb', line 248 def get_prev_layer(layer) layer_index = @layers.index(layer) prev_layer = if layer_index == 0 if @super_model @super_model.layers[@super_model.layers.index(self) - 1] else self end else @layers[layer_index - 1] end if prev_layer.is_a?(Layers::Layer) prev_layer elsif prev_layer.is_a?(Model) prev_layer.layers[-1] end end |
#load_json_params(json_str) ⇒ Object
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
# File 'lib/dnn/core/model.rb', line 30 def load_json_params(json_str) has_param_layers_params = JSON.parse(json_str, symbolize_names: true) has_param_layers_index = 0 @layers.each do |layer| next unless layer.is_a?(HasParamLayer) hash_params = has_param_layers_params[has_param_layers_index] hash_params.each do |key, (shape, base64_param)| bin = Base64.decode64(base64_param) data = Xumo::SFloat.from_binary(bin).reshape(*shape) if layer.params[key].is_a?(LearningParam) layer.params[key].data = data else layer.params[key] = data end end has_param_layers_index += 1 end end |
#loss(y) ⇒ Object
230 231 232 |
# File 'lib/dnn/core/model.rb', line 230 def loss(y) @layers[-1].loss(y) end |
#optimizer ⇒ Object
104 105 106 |
# File 'lib/dnn/core/model.rb', line 104 def optimizer @optimizer ? @optimizer : @super_model.optimizer end |
#params_to_json ⇒ Object
66 67 68 69 70 71 72 73 74 75 76 |
# File 'lib/dnn/core/model.rb', line 66 def params_to_json has_param_layers = @layers.select { |layer| layer.is_a?(Layers::HasParamLayer) } has_param_layers_params = has_param_layers.map do |layer| layer.params.map { |key, param| param = param.data if param.is_a?(LearningParam) base64_param = Base64.encode64(param.to_binary) [key, [param.shape, base64_param]] }.to_h end JSON.dump(has_param_layers_params) end |
#predict(x) ⇒ Object
195 196 197 198 |
# File 'lib/dnn/core/model.rb', line 195 def predict(x) input_data_shape_check(x) forward(x, false) end |
#predict1(x) ⇒ Object
200 201 202 |
# File 'lib/dnn/core/model.rb', line 200 def predict1(x) predict(Xumo::SFloat.cast([x]))[0, false] end |
#save(file_name) ⇒ Object
49 50 51 52 53 54 55 56 57 58 |
# File 'lib/dnn/core/model.rb', line 49 def save(file_name) marshal = Marshal.dump(self) begin File.binwrite(file_name, marshal) rescue Errno::ENOENT => ex dir_name = file_name.match(%r`(.*)/.+$`)[1] Dir.mkdir(dir_name) File.binwrite(file_name, marshal) end end |
#to_json ⇒ Object
60 61 62 63 64 |
# File 'lib/dnn/core/model.rb', line 60 def to_json hash_layers = @layers.map { |layer| layer.to_hash } hash = {version: VERSION, layers: hash_layers, optimizer: @optimizer.to_hash} JSON.pretty_generate(hash) end |
#train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) ⇒ Object
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# File 'lib/dnn/core/model.rb', line 116 def train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) unless compiled? raise DNN_Error.new("The model is not compiled.") end num_train_data = x.shape[0] (1..epochs).each do |epoch| puts "【 epoch #{epoch}/#{epochs} 】" if verbose (num_train_data.to_f / batch_size).ceil.times do |index| x_batch, y_batch = Util.get_minibatch(x, y, batch_size) loss = train_on_batch(x_batch, y_batch, &batch_proc) if loss.nan? puts "\nloss is nan" if verbose return end num_trained_data = (index + 1) * batch_size num_trained_data = num_trained_data > num_train_data ? num_train_data : num_trained_data log = "\r" 40.times do |i| if i < num_trained_data * 40 / num_train_data log << "=" elsif i == num_trained_data * 40 / num_train_data log << ">" else log << "_" end end log << " #{num_trained_data}/#{num_train_data} loss: #{sprintf('%.8f', loss)}" print log if verbose end if verbose && test acc = accurate(test[0], test[1], batch_size, &batch_proc) print " accurate: #{acc}" end puts "" if verbose epoch_proc.call(epoch) if epoch_proc end end |
#train_on_batch(x, y, &batch_proc) ⇒ Object
159 160 161 162 163 164 165 166 167 |
# File 'lib/dnn/core/model.rb', line 159 def train_on_batch(x, y, &batch_proc) input_data_shape_check(x, y) x, y = batch_proc.call(x, y) if batch_proc forward(x, true) loss_value = loss(y) backward(y) update loss_value end |
#training? ⇒ Boolean
112 113 114 |
# File 'lib/dnn/core/model.rb', line 112 def training? @training end |
#update ⇒ Object
242 243 244 245 246 |
# File 'lib/dnn/core/model.rb', line 242 def update @layers.each do |layer| layer.update if @trainable && (layer.is_a?(Layers::HasParamLayer) || layer.is_a?(Model)) end end |