Class: DNN::Model
- Inherits:
-
Object
- Object
- DNN::Model
- Defined in:
- lib/dnn/core/model.rb
Overview
This class deals with the model of the network.
Instance Attribute Summary collapse
-
#layers ⇒ Object
All layers possessed by the model.
-
#trainable ⇒ Object
Setting false prevents learning of parameters.
Class Method Summary collapse
Instance Method Summary collapse
- #<<(layer) ⇒ Object
- #accurate(x, y, batch_size = 1, &batch_proc) ⇒ Object
- #backward(y) ⇒ Object
- #build(super_model = nil) ⇒ Object
- #compile(optimizer) ⇒ Object
- #compiled? ⇒ Boolean
- #copy ⇒ Object
- #forward(x, training) ⇒ Object
- #get_prev_layer(layer) ⇒ Object
-
#initialize ⇒ Model
constructor
A new instance of Model.
- #load_json_params(json_str) ⇒ Object
- #loss(y) ⇒ Object
- #optimizer ⇒ Object
- #params_to_json ⇒ Object
- #predict(x) ⇒ Object
- #predict1(x) ⇒ Object
- #save(file_name) ⇒ Object
- #to_json ⇒ Object
- #train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) ⇒ Object
- #train_on_batch(x, y, &batch_proc) ⇒ Object
- #training? ⇒ Boolean
- #update ⇒ Object
Constructor Details
#initialize ⇒ Model
Returns a new instance of Model.
21 22 23 24 25 26 27 |
# File 'lib/dnn/core/model.rb', line 21 def initialize @layers = [] @trainable = true @optimizer = nil @training = false @compiled = false end |
Instance Attribute Details
#layers ⇒ Object
All layers possessed by the model
6 7 8 |
# File 'lib/dnn/core/model.rb', line 6 def layers @layers end |
#trainable ⇒ Object
Setting false prevents learning of parameters.
7 8 9 |
# File 'lib/dnn/core/model.rb', line 7 def trainable @trainable end |
Class Method Details
.load(file_name) ⇒ Object
9 10 11 |
# File 'lib/dnn/core/model.rb', line 9 def self.load(file_name) Marshal.load(File.binread(file_name)) end |
.load_json(json_str) ⇒ Object
13 14 15 16 17 18 19 |
# File 'lib/dnn/core/model.rb', line 13 def self.load_json(json_str) hash = JSON.parse(json_str, symbolize_names: true) model = self.new model.layers = hash[:layers].map { |hash_layer| Util.load_hash(hash_layer) } model.compile(Util.load_hash(hash[:optimizer])) model end |
Instance Method Details
#<<(layer) ⇒ Object
67 68 69 70 71 72 73 |
# File 'lib/dnn/core/model.rb', line 67 def <<(layer) if !layer.is_a?(Layers::Layer) && !layer.is_a?(Model) raise TypeError.new("layer is not an instance of the DNN::Layers::Layer class or DNN::Model class.") end @layers << layer self end |
#accurate(x, y, batch_size = 1, &batch_proc) ⇒ Object
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# File 'lib/dnn/core/model.rb', line 157 def accurate(x, y, batch_size = 1, &batch_proc) batch_size = batch_size >= x.shape[0] ? x.shape[0] : batch_size correct = 0 (x.shape[0].to_f / batch_size).ceil.times do |i| x_batch = Xumo::SFloat.zeros(batch_size, *x.shape[1..-1]) y_batch = Xumo::SFloat.zeros(batch_size, *y.shape[1..-1]) batch_size.times do |j| k = i * batch_size + j break if k >= x.shape[0] x_batch[j, false] = x[k, false] y_batch[j, false] = y[k, false] end x_batch, y_batch = batch_proc.call(x_batch, y_batch) if batch_proc out = forward(x_batch, false) batch_size.times do |j| if @layers[-1].shape == [1] correct += 1 if out[j, 0].round == y_batch[j, 0].round else correct += 1 if out[j, true].max_index == y_batch[j, true].max_index end end end correct.to_f / x.shape[0] end |
#backward(y) ⇒ Object
210 211 212 213 214 215 216 |
# File 'lib/dnn/core/model.rb', line 210 def backward(y) dout = y @layers.reverse.each do |layer| dout = layer.backward(dout) end dout end |
#build(super_model = nil) ⇒ Object
86 87 88 89 90 91 |
# File 'lib/dnn/core/model.rb', line 86 def build(super_model = nil) @super_model = super_model @layers.each do |layer| layer.build(self) end end |
#compile(optimizer) ⇒ Object
75 76 77 78 79 80 81 82 83 84 |
# File 'lib/dnn/core/model.rb', line 75 def compile(optimizer) unless optimizer.is_a?(Optimizers::Optimizer) raise TypeError.new("optimizer is not an instance of the DNN::Optimizers::Optimizer class.") end @compiled = true layers_check @optimizer = optimizer build layers_shape_check end |
#compiled? ⇒ Boolean
97 98 99 |
# File 'lib/dnn/core/model.rb', line 97 def compiled? @compiled end |
#copy ⇒ Object
190 191 192 |
# File 'lib/dnn/core/model.rb', line 190 def copy Marshal.load(Marshal.dump(self)) end |
#forward(x, training) ⇒ Object
194 195 196 197 198 199 200 201 202 203 204 |
# File 'lib/dnn/core/model.rb', line 194 def forward(x, training) @training = training @layers.each do |layer| x = if layer.is_a?(Layers::Layer) layer.forward(x) elsif layer.is_a?(Model) layer.forward(x, training) end end x end |
#get_prev_layer(layer) ⇒ Object
224 225 226 227 228 229 230 231 232 233 234 235 236 |
# File 'lib/dnn/core/model.rb', line 224 def get_prev_layer(layer) layer_index = @layers.index(layer) prev_layer = if layer_index == 0 @super_model.layers[@super_model.layers.index(self) - 1] else @layers[layer_index - 1] end if prev_layer.is_a?(Layers::Layer) prev_layer elsif prev_layer.is_a?(Model) prev_layer.layers[-1] end end |
#load_json_params(json_str) ⇒ Object
29 30 31 32 33 34 35 36 37 38 39 40 |
# File 'lib/dnn/core/model.rb', line 29 def load_json_params(json_str) has_param_layers_params = JSON.parse(json_str, symbolize_names: true) has_param_layers_index = 0 @layers.each do |layer| next unless layer.is_a?(HasParamLayer) hash_params = has_param_layers_params[has_param_layers_index] hash_params.each do |key, param| layer.params[key] = Xumo::SFloat.cast(param) end has_param_layers_index += 1 end end |
#loss(y) ⇒ Object
206 207 208 |
# File 'lib/dnn/core/model.rb', line 206 def loss(y) @layers[-1].loss(y) end |
#optimizer ⇒ Object
93 94 95 |
# File 'lib/dnn/core/model.rb', line 93 def optimizer @optimizer ? @optimizer : @super_model.optimizer end |
#params_to_json ⇒ Object
59 60 61 62 63 64 65 |
# File 'lib/dnn/core/model.rb', line 59 def params_to_json has_param_layers = @layers.select { |layer| layer.is_a?(HasParamLayer) } has_param_layers_params = has_param_layers.map do |layer| layer.params.map { |key, param| [key, param.to_a] }.to_h end JSON.dump(has_param_layers_params) end |
#predict(x) ⇒ Object
182 183 184 |
# File 'lib/dnn/core/model.rb', line 182 def predict(x) forward(x, false) end |
#predict1(x) ⇒ Object
186 187 188 |
# File 'lib/dnn/core/model.rb', line 186 def predict1(x) predict(Xumo::SFloat.cast([x]))[0, false] end |
#save(file_name) ⇒ Object
42 43 44 45 46 47 48 49 50 51 |
# File 'lib/dnn/core/model.rb', line 42 def save(file_name) marshal = Marshal.dump(self) begin File.binwrite(file_name, marshal) rescue Errno::ENOENT => ex dir_name = file_name.match(%r`(.*)/.+$`)[1] Dir.mkdir(dir_name) File.binwrite(file_name, marshal) end end |
#to_json ⇒ Object
53 54 55 56 57 |
# File 'lib/dnn/core/model.rb', line 53 def to_json hash_layers = @layers.map { |layer| layer.to_hash } hash = {version: VERSION, layers: hash_layers, optimizer: @optimizer.to_hash} JSON.dump(hash) end |
#train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) ⇒ Object
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# File 'lib/dnn/core/model.rb', line 105 def train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) unless compiled? raise DNN_Error.new("The model is not compiled.") end num_train_data = x.shape[0] (1..epochs).each do |epoch| puts "【 epoch #{epoch}/#{epochs} 】" if verbose (num_train_data.to_f / batch_size).ceil.times do |index| x_batch, y_batch = Util.get_minibatch(x, y, batch_size) loss = train_on_batch(x_batch, y_batch, &batch_proc) if loss.nan? puts "\nloss is nan" if verbose return end num_trained_data = (index + 1) * batch_size num_trained_data = num_trained_data > num_train_data ? num_train_data : num_trained_data log = "\r" 40.times do |i| if i < num_trained_data * 40 / num_train_data log << "=" elsif i == num_trained_data * 40 / num_train_data log << ">" else log << "_" end end log << " #{num_trained_data}/#{num_train_data} loss: #{sprintf('%.8f', loss)}" print log if verbose end if verbose && test acc = accurate(test[0], test[1], batch_size, &batch_proc) print " accurate: #{acc}" end puts "" if verbose epoch_proc.call(epoch) if epoch_proc end end |
#train_on_batch(x, y, &batch_proc) ⇒ Object
148 149 150 151 152 153 154 155 |
# File 'lib/dnn/core/model.rb', line 148 def train_on_batch(x, y, &batch_proc) x, y = batch_proc.call(x, y) if batch_proc forward(x, true) loss_value = loss(y) backward(y) update loss_value end |
#training? ⇒ Boolean
101 102 103 |
# File 'lib/dnn/core/model.rb', line 101 def training? @training end |
#update ⇒ Object
218 219 220 221 222 |
# File 'lib/dnn/core/model.rb', line 218 def update @layers.each do |layer| layer.update if @trainable && (layer.is_a?(Layers::HasParamLayer) || layer.is_a?(Model)) end end |