Class: DNN::Model
Overview
This class deals with the model of the network.
Instance Attribute Summary collapse
-
#batch_size ⇒ Object
readonly
Returns the value of attribute batch_size.
-
#layers ⇒ Object
Returns the value of attribute layers.
-
#optimizer ⇒ Object
readonly
Returns the value of attribute optimizer.
Class Method Summary collapse
Instance Method Summary collapse
- #<<(layer) ⇒ Object
- #accurate(x, y, batch_size = nil, &batch_proc) ⇒ Object
- #backward(y) ⇒ Object
- #compile(optimizer) ⇒ Object
- #compiled? ⇒ Boolean
- #forward(x, training) ⇒ Object
-
#initialize ⇒ Model
constructor
A new instance of Model.
- #load_json_params(json_str) ⇒ Object
- #params_to_json ⇒ Object
- #predict(x) ⇒ Object
- #save(file_name) ⇒ Object
- #to_json ⇒ Object
- #train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) ⇒ Object
- #train_on_batch(x, y, batch_size, &batch_proc) ⇒ Object
- #training? ⇒ Boolean
Constructor Details
#initialize ⇒ Model
Returns a new instance of Model.
12 13 14 15 16 17 |
# File 'lib/dnn/core/model.rb', line 12 def initialize @layers = [] @optimizer = nil @batch_size = nil @compiled = false end |
Instance Attribute Details
#batch_size ⇒ Object (readonly)
Returns the value of attribute batch_size.
10 11 12 |
# File 'lib/dnn/core/model.rb', line 10 def batch_size @batch_size end |
#layers ⇒ Object
Returns the value of attribute layers.
8 9 10 |
# File 'lib/dnn/core/model.rb', line 8 def layers @layers end |
#optimizer ⇒ Object (readonly)
Returns the value of attribute optimizer.
9 10 11 |
# File 'lib/dnn/core/model.rb', line 9 def optimizer @optimizer end |
Class Method Details
.load(file_name) ⇒ Object
19 20 21 |
# File 'lib/dnn/core/model.rb', line 19 def self.load(file_name) Marshal.load(File.binread(file_name)) end |
.load_json(json_str) ⇒ Object
23 24 25 26 27 28 29 |
# File 'lib/dnn/core/model.rb', line 23 def self.load_json(json_str) hash = JSON.parse(json_str, symbolize_names: true) model = self.new model.layers = hash[:layers].map { |hash_layer| Util.load_hash(hash_layer) } model.compile(Util.load_hash(hash[:optimizer])) model end |
Instance Method Details
#<<(layer) ⇒ Object
64 65 66 67 68 69 70 |
# File 'lib/dnn/core/model.rb', line 64 def <<(layer) unless layer.is_a?(Layers::Layer) raise DNN_TypeError.new("layer is not an instance of the DNN::Layers::Layer class.") end @layers << layer self end |
#accurate(x, y, batch_size = nil, &batch_proc) ⇒ Object
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# File 'lib/dnn/core/model.rb', line 141 def accurate(x, y, batch_size = nil, &batch_proc) unless batch_size if @batch_size batch_size = @batch_size >= x.shape[0] ? @batch_size : x.shape[0] else batch_size = 1 end end correct = 0 (x.shape[0].to_f / @batch_size).ceil.times do |i| x_batch = SFloat.zeros(@batch_size, *x.shape[1..-1]) y_batch = SFloat.zeros(@batch_size, *y.shape[1..-1]) @batch_size.times do |j| k = i * @batch_size + j break if k >= x.shape[0] x_batch[j, false] = x[k, false] y_batch[j, false] = y[k, false] end x_batch, y_batch = batch_proc.call(x_batch, y_batch) if batch_proc out = forward(x_batch, false) @batch_size.times do |j| correct += 1 if out[j, true].max_index == y_batch[j, true].max_index end end correct.to_f / x.shape[0] end |
#backward(y) ⇒ Object
180 181 182 183 184 185 186 |
# File 'lib/dnn/core/model.rb', line 180 def backward(y) dout = y @layers[0..-1].reverse.each do |layer| dout = layer.backward(dout) end dout end |
#compile(optimizer) ⇒ Object
72 73 74 75 76 77 78 79 80 81 82 83 |
# File 'lib/dnn/core/model.rb', line 72 def compile(optimizer) unless optimizer.is_a?(Optimizers::Optimizer) raise DNN_TypeError.new("optimizer is not an instance of the DNN::Optimizers::Optimizer class.") end @compiled = true layers_check @optimizer = optimizer @layers.each do |layer| layer.build(self) end layers_shape_check end |
#compiled? ⇒ Boolean
85 86 87 |
# File 'lib/dnn/core/model.rb', line 85 def compiled? @compiled end |
#forward(x, training) ⇒ Object
172 173 174 175 176 177 178 |
# File 'lib/dnn/core/model.rb', line 172 def forward(x, training) @training = training @layers.each do |layer| x = layer.forward(x) end x end |
#load_json_params(json_str) ⇒ Object
31 32 33 34 35 36 37 38 39 40 41 42 |
# File 'lib/dnn/core/model.rb', line 31 def load_json_params(json_str) has_param_layers_params = JSON.parse(json_str, symbolize_names: true) has_param_layers_index = 0 @layers.each do |layer| next unless layer.is_a?(HasParamLayer) hash_params = has_param_layers_params[has_param_layers_index] hash_params.each do |key, param| layer.params[key] = SFloat.cast(param) end has_param_layers_index += 1 end end |
#params_to_json ⇒ Object
56 57 58 59 60 61 62 |
# File 'lib/dnn/core/model.rb', line 56 def params_to_json has_param_layers = @layers.select { |layer| layer.is_a?(HasParamLayer) } has_param_layers_params = has_param_layers.map do |layer| layer.params.map { |key, param| [key, param.to_a] }.to_h end JSON.dump(has_param_layers_params) end |
#predict(x) ⇒ Object
168 169 170 |
# File 'lib/dnn/core/model.rb', line 168 def predict(x) forward(x, false) end |
#save(file_name) ⇒ Object
44 45 46 47 48 |
# File 'lib/dnn/core/model.rb', line 44 def save(file_name) dir_name = file_name.match(%r`(.*)/.+$`)[1] Dir.mkdir(dir_name) unless Dir.exist?(dir_name) File.binwrite(file_name, Marshal.dump(self)) end |
#to_json ⇒ Object
50 51 52 53 54 |
# File 'lib/dnn/core/model.rb', line 50 def to_json hash_layers = @layers.map { |layer| layer.to_hash } hash = {version: VERSION, layers: hash_layers, optimizer: @optimizer.to_hash} JSON.dump(hash) end |
#train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) ⇒ Object
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# File 'lib/dnn/core/model.rb', line 93 def train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) @batch_size = batch_size num_train_data = x.shape[0] (1..epochs).each do |epoch| puts "【 epoch #{epoch}/#{epochs} 】" if verbose (num_train_data.to_f / @batch_size).ceil.times do |index| x_batch, y_batch = Util.get_minibatch(x, y, @batch_size) loss = train_on_batch(x_batch, y_batch, @batch_size, &batch_proc) if loss.nan? puts "\nloss is nan" if verbose return end num_trained_data = (index + 1) * batch_size num_trained_data = num_trained_data > num_train_data ? num_train_data : num_trained_data log = "\r" 20.times do |i| if i < num_trained_data * 20 / num_train_data log << "■" else log << "・" end end log << " #{num_trained_data}/#{num_train_data} loss: #{loss}" print log if verbose end if verbose && test acc = accurate(test[0], test[1], batch_size,&batch_proc) print " accurate: #{acc}" end puts "" if verbose epoch_proc.call(epoch) if epoch_proc end end |
#train_on_batch(x, y, batch_size, &batch_proc) ⇒ Object
132 133 134 135 136 137 138 139 |
# File 'lib/dnn/core/model.rb', line 132 def train_on_batch(x, y, batch_size, &batch_proc) @batch_size = batch_size x, y = batch_proc.call(x, y) if batch_proc forward(x, true) backward(y) @layers.each { |layer| layer.update if layer.respond_to?(:update) } @layers[-1].loss(y) end |
#training? ⇒ Boolean
89 90 91 |
# File 'lib/dnn/core/model.rb', line 89 def training? @training end |