Class: DNN::Model
Instance Attribute Summary collapse
-
#batch_size ⇒ Object
readonly
Returns the value of attribute batch_size.
-
#layers ⇒ Object
Returns the value of attribute layers.
-
#optimizer ⇒ Object
readonly
Returns the value of attribute optimizer.
-
#training ⇒ Object
readonly
Returns the value of attribute training.
Class Method Summary collapse
Instance Method Summary collapse
- #<<(layer) ⇒ Object
- #accurate(x, y, batch_size = nil, &batch_proc) ⇒ Object
- #backward(y) ⇒ Object
- #compile(optimizer) ⇒ Object
- #compiled? ⇒ Boolean
- #forward(x, training) ⇒ Object
-
#initialize ⇒ Model
constructor
A new instance of Model.
- #load_json_params(json_str) ⇒ Object
- #params_to_json ⇒ Object
- #predict(x) ⇒ Object
- #save(file_name) ⇒ Object
- #to_json ⇒ Object
- #train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) ⇒ Object
- #train_on_batch(x, y, batch_size, &batch_proc) ⇒ Object
Constructor Details
#initialize ⇒ Model
Returns a new instance of Model.
13 14 15 16 17 18 |
# File 'lib/dnn/core/model.rb', line 13 def initialize @layers = [] @optimizer = nil @batch_size = nil @compiled = false end |
Instance Attribute Details
#batch_size ⇒ Object (readonly)
Returns the value of attribute batch_size.
10 11 12 |
# File 'lib/dnn/core/model.rb', line 10 def batch_size @batch_size end |
#layers ⇒ Object
Returns the value of attribute layers.
8 9 10 |
# File 'lib/dnn/core/model.rb', line 8 def layers @layers end |
#optimizer ⇒ Object (readonly)
Returns the value of attribute optimizer.
9 10 11 |
# File 'lib/dnn/core/model.rb', line 9 def optimizer @optimizer end |
#training ⇒ Object (readonly)
Returns the value of attribute training.
11 12 13 |
# File 'lib/dnn/core/model.rb', line 11 def training @training end |
Class Method Details
.load(file_name) ⇒ Object
20 21 22 |
# File 'lib/dnn/core/model.rb', line 20 def self.load(file_name) Marshal.load(File.binread(file_name)) end |
.load_json(json_str) ⇒ Object
24 25 26 27 28 29 30 |
# File 'lib/dnn/core/model.rb', line 24 def self.load_json(json_str) hash = JSON.parse(json_str, symbolize_names: true) model = self.new model.layers = hash[:layers].map { |hash_layer| Util.load_hash(hash_layer) } model.compile(Util.load_hash(hash[:optimizer])) model end |
Instance Method Details
#<<(layer) ⇒ Object
65 66 67 68 69 70 71 |
# File 'lib/dnn/core/model.rb', line 65 def <<(layer) unless layer.is_a?(Layers::Layer) raise DNN_TypeError.new("layer is not an instance of the DNN::Layers::Layer class.") end @layers << layer self end |
#accurate(x, y, batch_size = nil, &batch_proc) ⇒ Object
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# File 'lib/dnn/core/model.rb', line 138 def accurate(x, y, batch_size = nil, &batch_proc) @batch_size = batch_size if batch_size correct = 0 (x.shape[0].to_f / @batch_size).ceil.times do |i| x_batch = SFloat.zeros(@batch_size, *x.shape[1..-1]) y_batch = SFloat.zeros(@batch_size, *y.shape[1..-1]) @batch_size.times do |j| k = i * @batch_size + j break if k >= x.shape[0] x_batch[j, false] = x[k, false] y_batch[j, false] = y[k, false] end x_batch, y_batch = batch_proc.call(x_batch, y_batch) if batch_proc out = forward(x_batch, false) @batch_size.times do |j| correct += 1 if out[j, true].max_index == y_batch[j, true].max_index end end correct.to_f / x.shape[0] end |
#backward(y) ⇒ Object
171 172 173 174 175 176 177 |
# File 'lib/dnn/core/model.rb', line 171 def backward(y) dout = y @layers[0..-1].reverse.each do |layer| dout = layer.backward(dout) end dout end |
#compile(optimizer) ⇒ Object
73 74 75 76 77 78 79 80 81 82 83 84 |
# File 'lib/dnn/core/model.rb', line 73 def compile(optimizer) unless optimizer.is_a?(Optimizers::Optimizer) raise DNN_TypeError.new("optimizer is not an instance of the DNN::Optimizers::Optimizer class.") end @compiled = true layers_check @optimizer = optimizer @layers.each do |layer| layer.build(self) end layers_shape_check end |
#compiled? ⇒ Boolean
86 87 88 |
# File 'lib/dnn/core/model.rb', line 86 def compiled? @compiled end |
#forward(x, training) ⇒ Object
163 164 165 166 167 168 169 |
# File 'lib/dnn/core/model.rb', line 163 def forward(x, training) @training = training @layers.each do |layer| x = layer.forward(x) end x end |
#load_json_params(json_str) ⇒ Object
32 33 34 35 36 37 38 39 40 41 42 43 |
# File 'lib/dnn/core/model.rb', line 32 def load_json_params(json_str) has_param_layers_params = JSON.parse(json_str, symbolize_names: true) has_param_layers_index = 0 @layers.each do |layer| next unless layer.is_a?(HasParamLayer) hash_params = has_param_layers_params[has_param_layers_index] hash_params.each do |key, param| layer.params[key] = SFloat.cast(param) end has_param_layers_index += 1 end end |
#params_to_json ⇒ Object
57 58 59 60 61 62 63 |
# File 'lib/dnn/core/model.rb', line 57 def params_to_json has_param_layers = @layers.select { |layer| layer.is_a?(HasParamLayer) } has_param_layers_params = has_param_layers.map do |layer| layer.params.map { |key, param| [key, param.to_a] }.to_h end JSON.dump(has_param_layers_params) end |
#predict(x) ⇒ Object
159 160 161 |
# File 'lib/dnn/core/model.rb', line 159 def predict(x) forward(x, false) end |
#save(file_name) ⇒ Object
45 46 47 48 49 |
# File 'lib/dnn/core/model.rb', line 45 def save(file_name) dir_name = file_name.match(%r`(.*)/.+$`)[1] Dir.mkdir(dir_name) unless Dir.exist?(dir_name) File.binwrite(file_name, Marshal.dump(self)) end |
#to_json ⇒ Object
51 52 53 54 55 |
# File 'lib/dnn/core/model.rb', line 51 def to_json hash_layers = @layers.map { |layer| layer.to_hash } hash = {version: VERSION, layers: hash_layers, optimizer: @optimizer.to_hash} JSON.dump(hash) end |
#train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) ⇒ Object
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# File 'lib/dnn/core/model.rb', line 90 def train(x, y, epochs, batch_size: 1, test: nil, verbose: true, batch_proc: nil, &epoch_proc) @batch_size = batch_size num_train_data = x.shape[0] (1..epochs).each do |epoch| puts "【 epoch #{epoch}/#{epochs} 】" if verbose (num_train_data.to_f / @batch_size).ceil.times do |index| x_batch, y_batch = Util.get_minibatch(x, y, @batch_size) loss = train_on_batch(x_batch, y_batch, @batch_size, &batch_proc) if loss.nan? puts "\nloss is nan" if verbose return end num_trained_data = (index + 1) * batch_size num_trained_data = num_trained_data > num_train_data ? num_train_data : num_trained_data log = "\r" 20.times do |i| if i < num_trained_data * 20 / num_train_data log << "■" else log << "・" end end log << " #{num_trained_data}/#{num_train_data} loss: #{loss}" print log if verbose end if verbose && test acc = accurate(test[0], test[1], batch_size,&batch_proc) print " accurate: #{acc}" end puts "" if verbose epoch_proc.call(epoch) if epoch_proc end end |
#train_on_batch(x, y, batch_size, &batch_proc) ⇒ Object
129 130 131 132 133 134 135 136 |
# File 'lib/dnn/core/model.rb', line 129 def train_on_batch(x, y, batch_size, &batch_proc) @batch_size = batch_size x, y = batch_proc.call(x, y) if batch_proc forward(x, true) backward(y) @layers.each { |layer| layer.update if layer.respond_to?(:update) } @layers[-1].loss(y) end |