Class: DNN::Models::Model
Overview
This class deals with the model of the network.
Direct Known Subclasses
Instance Attribute Summary collapse
-
#last_log ⇒ Object
readonly
Returns the value of attribute last_log.
-
#loss_func ⇒ Object
Returns the value of attribute loss_func.
-
#optimizer ⇒ Object
Returns the value of attribute optimizer.
Class Method Summary collapse
-
.load(file_name) ⇒ DNN::Models::Model
Load marshal model.
Instance Method Summary collapse
-
#add_callback(callback) ⇒ Object
Add callback function.
-
#built? ⇒ Boolean
If model have already been built then return true.
- #call(inputs) ⇒ Object
- #clean_layers ⇒ Object
-
#clear_callbacks ⇒ Object
Clear the callback function registered for each event.
-
#copy ⇒ DNN::Models::Model
Return the copy this model.
-
#evaluate(x, y, batch_size: 100) ⇒ Array
Evaluate model and get accuracy and loss of test data.
-
#evaluate_by_iterator(test_iterator, batch_size: 100) ⇒ Array
Evaluate model by iterator.
- #get_all_params_data ⇒ Object
-
#get_layer(name) ⇒ DNN::Layers::Layer
Get the layer that the model has.
-
#initialize ⇒ Model
constructor
A new instance of Model.
-
#load_params(file_name) ⇒ Object
Load marshal params.
-
#predict(x, use_loss_activation: true) ⇒ Object
Predict data.
-
#predict1(x, use_loss_activation: true) ⇒ Object
Predict one data.
-
#save(file_name) ⇒ Object
Save the model in marshal format.
-
#save_params(file_name) ⇒ Object
Save the params in marshal format.
- #set_all_params_data(params_data) ⇒ Object
-
#setup(optimizer, loss_func) ⇒ Object
Set optimizer and loss_func to model.
-
#test_on_batch(x, y) ⇒ Array
Evaluate once.
-
#train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object
(also: #fit)
Start training.
-
#train_by_iterator(train_iterator, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object
(also: #fit_by_iterator)
Start training by iterator.
-
#train_on_batch(x, y) ⇒ Float | Numo::SFloat
Training once.
-
#trainable_layers ⇒ Array
Get the all trainable layers.
Methods inherited from Chain
#forward, #layers, #load_hash, #to_hash
Constructor Details
#initialize ⇒ Model
Returns a new instance of Model.
120 121 122 123 124 125 126 127 |
# File 'lib/dnn/core/models.rb', line 120 def initialize @optimizer = nil @loss_func = nil @built = false @callbacks = [] @layers_cache = nil @last_log = {} end |
Instance Attribute Details
#last_log ⇒ Object (readonly)
Returns the value of attribute last_log.
108 109 110 |
# File 'lib/dnn/core/models.rb', line 108 def last_log @last_log end |
#loss_func ⇒ Object
Returns the value of attribute loss_func.
107 108 109 |
# File 'lib/dnn/core/models.rb', line 107 def loss_func @loss_func end |
#optimizer ⇒ Object
Returns the value of attribute optimizer.
106 107 108 |
# File 'lib/dnn/core/models.rb', line 106 def optimizer @optimizer end |
Class Method Details
.load(file_name) ⇒ DNN::Models::Model
Load marshal model.
113 114 115 116 117 118 |
# File 'lib/dnn/core/models.rb', line 113 def self.load(file_name) model = self.allocate loader = Loaders::MarshalLoader.new(model) loader.load(file_name) model end |
Instance Method Details
#add_callback(callback) ⇒ Object
Add callback function.
361 362 363 364 |
# File 'lib/dnn/core/models.rb', line 361 def add_callback(callback) callback.model = self @callbacks << callback end |
#built? ⇒ Boolean
Returns If model have already been built then return true.
413 414 415 |
# File 'lib/dnn/core/models.rb', line 413 def built? @built end |
#call(inputs) ⇒ Object
129 130 131 132 133 134 |
# File 'lib/dnn/core/models.rb', line 129 def call(inputs) @layers_cache = nil output_tensor = forward(inputs) @built = true unless @built output_tensor end |
#clean_layers ⇒ Object
417 418 419 420 421 |
# File 'lib/dnn/core/models.rb', line 417 def clean_layers layers.each(&:clean) @loss_func.clean @layers_cache = nil end |
#clear_callbacks ⇒ Object
Clear the callback function registered for each event.
367 368 369 |
# File 'lib/dnn/core/models.rb', line 367 def clear_callbacks @callbacks = [] end |
#copy ⇒ DNN::Models::Model
Return the copy this model.
393 394 395 |
# File 'lib/dnn/core/models.rb', line 393 def copy Marshal.load(Marshal.dump(self)) end |
#evaluate(x, y, batch_size: 100) ⇒ Array
Evaluate model and get accuracy and loss of test data.
277 278 279 280 |
# File 'lib/dnn/core/models.rb', line 277 def evaluate(x, y, batch_size: 100) check_xy_type(x, y) evaluate_by_iterator(Iterator.new(x, y, random: false), batch_size: batch_size) end |
#evaluate_by_iterator(test_iterator, batch_size: 100) ⇒ Array
Evaluate model by iterator.
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# File 'lib/dnn/core/models.rb', line 286 def evaluate_by_iterator(test_iterator, batch_size: 100) num_test_datas = test_iterator.num_datas batch_size = batch_size >= num_test_datas ? num_test_datas : batch_size total_correct = 0 sum_loss = 0 max_steps = (num_test_datas.to_f / batch_size).ceil test_iterator.foreach(batch_size) do |x_batch, y_batch| correct, loss_value = test_on_batch(x_batch, y_batch) total_correct += correct sum_loss += loss_value end mean_loss = sum_loss / max_steps acc = total_correct.to_f / num_test_datas @last_log[:test_loss] = mean_loss @last_log[:test_accuracy] = acc [acc, mean_loss] end |
#get_all_params_data ⇒ Object
423 424 425 426 427 428 429 |
# File 'lib/dnn/core/models.rb', line 423 def get_all_params_data trainable_layers.map do |layer| layer.get_params.to_h do |key, param| [key, param.data] end end end |
#get_layer(name) ⇒ DNN::Layers::Layer
Get the layer that the model has.
406 407 408 409 410 |
# File 'lib/dnn/core/models.rb', line 406 def get_layer(name) layer = instance_variable_get("@#{name}") return layer if layer.is_a?(Layers::Layer) || layer.is_a?(Chain) || layer.is_a?(LayersList) nil end |
#load_params(file_name) ⇒ Object
Load marshal params.
373 374 375 376 |
# File 'lib/dnn/core/models.rb', line 373 def load_params(file_name) loader = Loaders::MarshalLoader.new(self) loader.load(file_name) end |
#predict(x, use_loss_activation: true) ⇒ Object
Predict data.
341 342 343 344 345 346 347 348 349 350 |
# File 'lib/dnn/core/models.rb', line 341 def predict(x, use_loss_activation: true) check_xy_type(x) DNN.learning_phase = false out = call(Tensor.convert(x)) y = out.data if use_loss_activation && @loss_func.class.respond_to?(:activation) y = @loss_func.class.activation(y) end y end |
#predict1(x, use_loss_activation: true) ⇒ Object
Predict one data.
354 355 356 357 |
# File 'lib/dnn/core/models.rb', line 354 def predict1(x, use_loss_activation: true) check_xy_type(x) predict(x.reshape(1, *x.shape), use_loss_activation: use_loss_activation)[0, false] end |
#save(file_name) ⇒ Object
Save the model in marshal format.
380 381 382 383 |
# File 'lib/dnn/core/models.rb', line 380 def save(file_name) saver = Savers::MarshalSaver.new(self, include_model: true) saver.save(file_name) end |
#save_params(file_name) ⇒ Object
Save the params in marshal format.
387 388 389 390 |
# File 'lib/dnn/core/models.rb', line 387 def save_params(file_name) saver = Savers::MarshalSaver.new(self, include_model: false) saver.save(file_name) end |
#set_all_params_data(params_data) ⇒ Object
431 432 433 434 435 436 437 |
# File 'lib/dnn/core/models.rb', line 431 def set_all_params_data(params_data) trainable_layers.each.with_index do |layer, i| params_data[i].each do |(key, data)| layer.get_params[key].data = data end end end |
#setup(optimizer, loss_func) ⇒ Object
Set optimizer and loss_func to model.
139 140 141 142 143 144 145 146 147 148 |
# File 'lib/dnn/core/models.rb', line 139 def setup(optimizer, loss_func) unless optimizer.is_a?(Optimizers::Optimizer) raise TypeError, "optimizer:#{optimizer.class} is not an instance of DNN::Optimizers::Optimizer class." end unless loss_func.is_a?(Losses::Loss) raise TypeError, "loss_func:#{loss_func.class} is not an instance of DNN::Losses::Loss class." end @optimizer = optimizer @loss_func = loss_func end |
#test_on_batch(x, y) ⇒ Array
Evaluate once.
308 309 310 311 312 313 314 315 316 |
# File 'lib/dnn/core/models.rb', line 308 def test_on_batch(x, y) call_callbacks(:before_test_on_batch) DNN.learning_phase = false out = call(Tensor.convert(x)) correct = accuracy(out.data, y) loss = @loss_func.(out, Tensor.convert(y)) call_callbacks(:after_test_on_batch) [correct, loss.data] end |
#train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object Also known as: fit
Start training. Setup the model before use this method.
160 161 162 163 164 165 166 167 168 169 170 171 172 |
# File 'lib/dnn/core/models.rb', line 160 def train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) check_xy_type(x, y) train_iterator = Iterator.new(x, y) train_by_iterator(train_iterator, epochs, batch_size: batch_size, initial_epoch: initial_epoch, test: test, verbose: verbose) end |
#train_by_iterator(train_iterator, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object Also known as: fit_by_iterator
Start training by iterator. Setup the model before use this method.
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# File 'lib/dnn/core/models.rb', line 185 def train_by_iterator(train_iterator, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) raise DNN_Error, "The model is not optimizer setup complete." unless @optimizer raise DNN_Error, "The model is not loss_func setup complete." unless @loss_func num_train_datas = train_iterator.num_datas num_train_datas = num_train_datas / batch_size * batch_size if train_iterator.last_round_down stopped = catch(:stop) do (initial_epoch..epochs).each do |epoch| @last_log[:epoch] = epoch call_callbacks(:before_epoch) puts "【 epoch #{epoch}/#{epochs} 】" if verbose train_iterator.foreach(batch_size) do |x_batch, y_batch, index| train_step_met = train_step(x_batch, y_batch) num_trained_datas = (index + 1) * batch_size num_trained_datas = num_trained_datas > num_train_datas ? num_train_datas : num_trained_datas log = "\r" 40.times do |i| if i < num_trained_datas * 40 / num_train_datas log << "=" elsif i == num_trained_datas * 40 / num_train_datas log << ">" else log << "_" end end log << " #{num_trained_datas}/#{num_train_datas} " log << metrics_to_str(train_step_met) print log if verbose end if test acc, loss = if test.is_a?(Array) evaluate(test[0], test[1], batch_size: batch_size) else evaluate_by_iterator(test, batch_size: batch_size) end print " " + metrics_to_str({ accuracy: acc, test_loss: loss }) if verbose end puts "" if verbose call_callbacks(:after_epoch) end nil end if stopped puts "\n#{stopped}" if verbose end end |
#train_on_batch(x, y) ⇒ Float | Numo::SFloat
Training once. Setup the model before use this method.
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# File 'lib/dnn/core/models.rb', line 257 def train_on_batch(x, y) raise DNN_Error, "The model is not optimizer setup complete." unless @optimizer raise DNN_Error, "The model is not loss_func setup complete." unless @loss_func check_xy_type(x, y) call_callbacks(:before_train_on_batch) DNN.learning_phase = true out = call(Tensor.convert(x)) loss = @loss_func.loss(out, Tensor.convert(y), layers) loss.link.backward(Xumo::SFloat.zeros(y[0...1, false].shape)) @optimizer.update(get_all_trainable_params) @last_log[:train_loss] = loss.data call_callbacks(:after_train_on_batch) loss.data end |
#trainable_layers ⇒ Array
Get the all trainable layers.
399 400 401 |
# File 'lib/dnn/core/models.rb', line 399 def trainable_layers layers.select { |layer| layer.is_a?(Layers::TrainableLayer) } end |