Class: DNN::Layers::GRU
- Inherits:
-
RNN
- Object
- Layer
- TrainableLayer
- Connection
- RNN
- DNN::Layers::GRU
- Defined in:
- lib/dnn/core/layers/rnn_layers.rb
Instance Attribute Summary
Attributes inherited from RNN
#hidden, #num_nodes, #recurrent_weight, #recurrent_weight_initializer, #recurrent_weight_regularizer, #return_sequences, #stateful
Attributes inherited from Connection
#bias, #bias_initializer, #bias_regularizer, #weight, #weight_initializer, #weight_regularizer
Attributes inherited from TrainableLayer
Attributes inherited from Layer
Instance Method Summary collapse
- #build(input_shape) ⇒ Object
- #create_hidden_layer ⇒ Object
-
#initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: Initializers::RandomNormal.new, recurrent_weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, recurrent_weight_regularizer: nil, bias_regularizer: nil, use_bias: true) ⇒ GRU
constructor
A new instance of GRU.
Methods inherited from RNN
#backward_node, #forward_node, #get_params, #load_hash, #output_shape, #regularizers, #reset_state, #to_hash
Methods included from LayerNode
#backward, #backward_node, #forward, #forward_node
Methods inherited from Connection
#get_params, #regularizers, #to_hash, #use_bias
Methods inherited from TrainableLayer
Methods inherited from Layer
#built?, #call, call, #clean, #forward, from_hash, #load_hash, #output_shape, #to_hash
Constructor Details
#initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: Initializers::RandomNormal.new, recurrent_weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, recurrent_weight_regularizer: nil, bias_regularizer: nil, use_bias: true) ⇒ GRU
Returns a new instance of GRU.
443 444 445 446 447 448 449 450 451 452 453 454 |
# File 'lib/dnn/core/layers/rnn_layers.rb', line 443 def initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: Initializers::RandomNormal.new, recurrent_weight_initializer: Initializers::RandomNormal.new, bias_initializer: Initializers::Zeros.new, weight_regularizer: nil, recurrent_weight_regularizer: nil, bias_regularizer: nil, use_bias: true) super end |
Instance Method Details
#build(input_shape) ⇒ Object
456 457 458 459 460 461 462 463 |
# File 'lib/dnn/core/layers/rnn_layers.rb', line 456 def build(input_shape) super num_prev_nodes = @input_shape[1] @weight.data = Xumo::SFloat.new(num_prev_nodes, @num_nodes * 3) @recurrent_weight.data = Xumo::SFloat.new(@num_nodes, @num_nodes * 3) @bias.data = Xumo::SFloat.new(@num_nodes * 3) if @bias init_weight_and_bias end |
#create_hidden_layer ⇒ Object
465 466 467 |
# File 'lib/dnn/core/layers/rnn_layers.rb', line 465 def create_hidden_layer @hidden_layers = Array.new(@time_length) { GRUDense.new(@weight, @recurrent_weight, @bias) } end |