Class: DNN::Layers::GRUDense

Inherits:
Object
  • Object
show all
Defined in:
lib/dnn/core/layers/rnn_layers.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(weight, recurrent_weight, bias) ⇒ GRUDense

Returns a new instance of GRUDense.



369
370
371
372
373
374
375
376
377
# File 'lib/dnn/core/layers/rnn_layers.rb', line 369

def initialize(weight, recurrent_weight, bias)
  @weight = weight
  @recurrent_weight = recurrent_weight
  @bias = bias
  @update_sigmoid = Layers::Sigmoid.new
  @reset_sigmoid = Layers::Sigmoid.new
  @tanh = Layers::Tanh.new
  @trainable = true
end

Instance Attribute Details

#trainableObject

Returns the value of attribute trainable.



367
368
369
# File 'lib/dnn/core/layers/rnn_layers.rb', line 367

def trainable
  @trainable
end

Instance Method Details

#backward(dh2) ⇒ Object



402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# File 'lib/dnn/core/layers/rnn_layers.rb', line 402

def backward(dh2)
  dtanh_h = @tanh.backward(dh2 * (1 - @update))
  dh = dh2 * @update

  if @trainable
    dweight_h = @x.transpose.dot(dtanh_h)
    dweight2_h = (@h * @reset).transpose.dot(dtanh_h)
    dbias_h = dtanh_h.sum(0) if @bias
  end
  dx = dtanh_h.dot(@weight_h.transpose)
  dh += dtanh_h.dot(@weight2_h.transpose) * @reset

  dreset = @reset_sigmoid.backward(dtanh_h.dot(@weight2_h.transpose) * @h)
  dupdate = @update_sigmoid.backward(dh2 * @h - dh2 * @tanh_h)
  da = Xumo::SFloat.hstack([dupdate, dreset])
  if @trainable
    dweight_a = @x.transpose.dot(da)
    dweight2_a = @h.transpose.dot(da)
    dbias_a = da.sum(0) if @bias
  end
  dx += da.dot(@weight_a.transpose)
  dh += da.dot(@weight2_a.transpose)

  if @trainable
    @weight.grad += Xumo::SFloat.hstack([dweight_a, dweight_h])
    @recurrent_weight.grad += Xumo::SFloat.hstack([dweight2_a, dweight2_h])
    @bias.grad += Xumo::SFloat.hstack([dbias_a, dbias_h]) if @bias
  end
  [dx, dh]
end

#forward(x, h) ⇒ Object



379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# File 'lib/dnn/core/layers/rnn_layers.rb', line 379

def forward(x, h)
  @x = x
  @h = h
  num_nodes = h.shape[1]
  @weight_a = @weight.data[true, 0...(num_nodes * 2)]
  @weight2_a = @recurrent_weight.data[true, 0...(num_nodes * 2)]
  a = x.dot(@weight_a) + h.dot(@weight2_a)
  a += @bias.data[0...(num_nodes * 2)] if @bias
  @update = @update_sigmoid.forward(a[true, 0...num_nodes])
  @reset = @reset_sigmoid.forward(a[true, num_nodes..-1])

  @weight_h = @weight.data[true, (num_nodes * 2)..-1]
  @weight2_h = @recurrent_weight.data[true, (num_nodes * 2)..-1]
  @tanh_h = if @bias
              bias_h = @bias.data[(num_nodes * 2)..-1]
              @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h) + bias_h)
            else
              @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h))
            end
  h2 = (1 - @update) * @tanh_h + @update * h
  h2
end