Class: DNN::Models::Model
- Inherits:
-
Object
- Object
- DNN::Models::Model
- Defined in:
- lib/dnn/core/models.rb
Overview
This class deals with the model of the network.
Direct Known Subclasses
Instance Attribute Summary collapse
-
#loss_func ⇒ Object
Returns the value of attribute loss_func.
-
#optimizer ⇒ Object
Returns the value of attribute optimizer.
Class Method Summary collapse
-
.load(file_name) ⇒ DNN::Models::Model
Load marshal model.
Instance Method Summary collapse
-
#accuracy(x, y, batch_size: 100) ⇒ Array
Evaluate model and get accuracy of test data.
-
#add_callback(event, callback) ⇒ Object
Add callback function.
-
#built? ⇒ Boolean
If model have already been built then return true.
-
#clear_callbacks(event) ⇒ Object
Clear the callback function registered for each event.
-
#copy ⇒ DNN::Models::Model
Return the copy this model.
-
#get_layer(name) ⇒ DNN::Layers::Layer
Get the layer that the model has.
-
#has_param_layers ⇒ Array
Get the all has param layers.
-
#initialize ⇒ Model
constructor
A new instance of Model.
-
#layers ⇒ Array
Get the all layers.
-
#load_hash_params(hash) ⇒ Object
This method is provided for compatibility with v0.12.4.
-
#load_json_params(json_str) ⇒ Object
This method is provided for compatibility with v0.12.4.
-
#predict(x) ⇒ Object
Predict data.
-
#predict1(x) ⇒ Object
Predict one data.
-
#save(file_name) ⇒ Object
Save the model in marshal format.
-
#setup(optimizer, loss_func) ⇒ Object
Set optimizer and loss_func to model.
-
#test_on_batch(x, y) ⇒ Array
Evaluate once.
-
#train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object
(also: #fit)
Start training.
-
#train_on_batch(x, y) ⇒ Float | Numo::SFloat
Training once.
Constructor Details
#initialize ⇒ Model
Returns a new instance of Model.
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
# File 'lib/dnn/core/models.rb', line 19 def initialize @optimizer = nil @loss_func = nil @last_link = nil @built = false @callbacks = { before_epoch: [], after_epoch: [], before_train_on_batch: [], after_train_on_batch: [], before_test_on_batch: [], after_test_on_batch: [], } @layers_cache = nil end |
Instance Attribute Details
#loss_func ⇒ Object
Returns the value of attribute loss_func.
7 8 9 |
# File 'lib/dnn/core/models.rb', line 7 def loss_func @loss_func end |
#optimizer ⇒ Object
Returns the value of attribute optimizer.
6 7 8 |
# File 'lib/dnn/core/models.rb', line 6 def optimizer @optimizer end |
Class Method Details
.load(file_name) ⇒ DNN::Models::Model
Load marshal model.
12 13 14 15 16 17 |
# File 'lib/dnn/core/models.rb', line 12 def self.load(file_name) model = self.new loader = Loaders::MarshalLoader.new(model) loader.load(file_name) model end |
Instance Method Details
#accuracy(x, y, batch_size: 100) ⇒ Array
Evaluate model and get accuracy of test data.
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# File 'lib/dnn/core/models.rb', line 166 def accuracy(x, y, batch_size: 100) check_xy_type(x, y) num_test_datas = x.is_a?(Array) ? x[0].shape[0] : x.shape[0] batch_size = batch_size >= num_test_datas[0] ? num_test_datas : batch_size iter = Iterator.new(x, y, random: false) total_correct = 0 sum_loss = 0 max_steps = (num_test_datas.to_f / batch_size).ceil iter.foreach(batch_size) do |x_batch, y_batch| correct, loss_value = test_on_batch(x_batch, y_batch) total_correct += correct sum_loss += loss_value.is_a?(Xumo::SFloat) ? loss_value.mean : loss_value end mean_loss = sum_loss / max_steps [total_correct.to_f / num_test_datas, mean_loss] end |
#add_callback(event, callback) ⇒ Object
Add callback function.
237 238 239 240 |
# File 'lib/dnn/core/models.rb', line 237 def add_callback(event, callback) raise DNN_UnknownEventError.new("Unknown event #{event}.") unless @callbacks.has_key?(event) @callbacks[event] << callback end |
#built? ⇒ Boolean
Returns If model have already been built then return true.
301 302 303 |
# File 'lib/dnn/core/models.rb', line 301 def built? @built end |
#clear_callbacks(event) ⇒ Object
Clear the callback function registered for each event.
250 251 252 253 |
# File 'lib/dnn/core/models.rb', line 250 def clear_callbacks(event) raise DNN_UnknownEventError.new("Unknown event #{event}.") unless @callbacks.has_key?(event) @callbacks[event] = [] end |
#copy ⇒ DNN::Models::Model
Return the copy this model.
263 264 265 |
# File 'lib/dnn/core/models.rb', line 263 def copy Marshal.load(Marshal.dump(self)) end |
#get_layer(name) ⇒ DNN::Layers::Layer
Get the layer that the model has.
296 297 298 |
# File 'lib/dnn/core/models.rb', line 296 def get_layer(name) layers.find { |layer| layer.name == name } end |
#has_param_layers ⇒ Array
Get the all has param layers.
289 290 291 |
# File 'lib/dnn/core/models.rb', line 289 def has_param_layers layers.select { |layer| layer.is_a?(Layers::HasParamLayer) } end |
#layers ⇒ Array
Get the all layers.
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# File 'lib/dnn/core/models.rb', line 269 def layers raise DNN_Error.new("This model is not built. You need build this model using predict or train.") unless built? return @layers_cache if @layers_cache layers = [] get_layers = -> link do return unless link layers.unshift(link.layer) if link.is_a?(TwoInputLink) get_layers.(link.prev1) get_layers.(link.prev2) else get_layers.(link.prev) end end get_layers.(@last_link) @layers_cache = layers.uniq end |
#load_hash_params(hash) ⇒ Object
This method is provided for compatibility with v0.12.4. Load hash model parameters.
38 39 40 41 42 43 44 45 46 47 48 49 |
# File 'lib/dnn/core/models.rb', line 38 def load_hash_params(hash) has_param_layers_params = hash[:params] has_param_layers_index = 0 has_param_layers.uniq.each do |layer| hash_params = has_param_layers_params[has_param_layers_index] hash_params.each do |key, (shape, bin)| data = Xumo::SFloat.from_binary(bin).reshape(*shape) layer.get_params[key].data = data end has_param_layers_index += 1 end end |
#load_json_params(json_str) ⇒ Object
This method is provided for compatibility with v0.12.4. Load json model parameters.
54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
# File 'lib/dnn/core/models.rb', line 54 def load_json_params(json_str) hash = JSON.parse(json_str, symbolize_names: true) has_param_layers_params = hash[:params] has_param_layers_index = 0 has_param_layers.uniq.each do |layer| hash_params = has_param_layers_params[has_param_layers_index] hash_params.each do |key, (shape, base64_param)| bin = Base64.decode64(base64_param) data = Xumo::SFloat.from_binary(bin).reshape(*shape) layer.get_params[key].data = data end has_param_layers_index += 1 end end |
#predict(x) ⇒ Object
Predict data.
217 218 219 220 |
# File 'lib/dnn/core/models.rb', line 217 def predict(x) check_xy_type(x) forward(x, false) end |
#predict1(x) ⇒ Object
Predict one data.
224 225 226 227 |
# File 'lib/dnn/core/models.rb', line 224 def predict1(x) check_xy_type(x) predict(x.reshape(1, *x.shape))[0, false] end |
#save(file_name) ⇒ Object
Save the model in marshal format.
257 258 259 260 |
# File 'lib/dnn/core/models.rb', line 257 def save(file_name) saver = Savers::MarshalSaver.new(self) saver.save(file_name) end |
#setup(optimizer, loss_func) ⇒ Object
Set optimizer and loss_func to model.
72 73 74 75 76 77 78 79 80 81 |
# File 'lib/dnn/core/models.rb', line 72 def setup(optimizer, loss_func) unless optimizer.is_a?(Optimizers::Optimizer) raise TypeError.new("optimizer:#{optimizer.class} is not an instance of DNN::Optimizers::Optimizer class.") end unless loss_func.is_a?(Losses::Loss) raise TypeError.new("loss_func:#{loss_func.class} is not an instance of DNN::Losses::Loss class.") end @optimizer = optimizer @loss_func = loss_func end |
#test_on_batch(x, y) ⇒ Array
Evaluate once.
187 188 189 190 191 192 193 194 |
# File 'lib/dnn/core/models.rb', line 187 def test_on_batch(x, y) call_callbacks(:before_test_on_batch) x = forward(x, false) correct = evaluate(x, y) loss_value = @loss_func.loss(x, y, layers) call_callbacks(:after_test_on_batch, loss_value) [correct, loss_value] end |
#train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) ⇒ Object Also known as: fit
Start training. Setup the model before use this method.
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# File 'lib/dnn/core/models.rb', line 93 def train(x, y, epochs, batch_size: 1, initial_epoch: 1, test: nil, verbose: true) raise DNN_Error.new("The model is not optimizer setup complete.") unless @optimizer raise DNN_Error.new("The model is not loss_func setup complete.") unless @loss_func check_xy_type(x, y) iter = Iterator.new(x, y) num_train_datas = x.is_a?(Array) ? x[0].shape[0] : x.shape[0] (initial_epoch..epochs).each do |epoch| call_callbacks(:before_epoch, epoch) puts "【 epoch #{epoch}/#{epochs} 】" if verbose iter.foreach(batch_size) do |x_batch, y_batch, index| loss_value = train_on_batch(x_batch, y_batch) if loss_value.is_a?(Xumo::SFloat) loss_value = loss_value.mean elsif loss_value.nan? puts "\nloss is nan" if verbose return end num_trained_datas = (index + 1) * batch_size num_trained_datas = num_trained_datas > num_train_datas ? num_train_datas : num_trained_datas log = "\r" 40.times do |i| if i < num_trained_datas * 40 / num_train_datas log << "=" elsif i == num_trained_datas * 40 / num_train_datas log << ">" else log << "_" end end log << " #{num_trained_datas}/#{num_train_datas} loss: #{sprintf('%.8f', loss_value)}" print log if verbose end if test acc, test_loss = accuracy(test[0], test[1], batch_size: batch_size) print " accuracy: #{acc}, test loss: #{sprintf('%.8f', test_loss)}" if verbose end puts "" if verbose call_callbacks(:after_epoch, epoch) end end |
#train_on_batch(x, y) ⇒ Float | Numo::SFloat
Training once. Setup the model before use this method.
146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# File 'lib/dnn/core/models.rb', line 146 def train_on_batch(x, y) raise DNN_Error.new("The model is not optimizer setup complete.") unless @optimizer raise DNN_Error.new("The model is not loss_func setup complete.") unless @loss_func check_xy_type(x, y) call_callbacks(:before_train_on_batch) x = forward(x, true) loss_value = @loss_func.loss(x, y, layers) dy = @loss_func.backward(x, y) backward(dy) @optimizer.update(layers) @loss_func.regularizers_backward(layers) call_callbacks(:after_train_on_batch, loss_value) loss_value end |