Class: DNN::Layers::GRUDense

Inherits:
Object
  • Object
show all
Defined in:
lib/dnn/core/rnn_layers.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(weight, recurrent_weight, bias) ⇒ GRUDense

Returns a new instance of GRUDense.



366
367
368
369
370
371
372
373
374
# File 'lib/dnn/core/rnn_layers.rb', line 366

def initialize(weight, recurrent_weight, bias)
  @weight = weight
  @recurrent_weight = recurrent_weight
  @bias = bias
  @update_sigmoid = Activations::Sigmoid.new
  @reset_sigmoid = Activations::Sigmoid.new
  @tanh = Activations::Tanh.new
  @trainable = true
end

Instance Attribute Details

#trainableObject

Returns the value of attribute trainable.



364
365
366
# File 'lib/dnn/core/rnn_layers.rb', line 364

def trainable
  @trainable
end

Instance Method Details

#backward(dh2) ⇒ Object



399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# File 'lib/dnn/core/rnn_layers.rb', line 399

def backward(dh2)
  dtanh_h = @tanh.backward(dh2 * (1 - @update))
  dh = dh2 * @update

  if @trainable
    dweight_h = @x.transpose.dot(dtanh_h)
    dweight2_h = (@h * @reset).transpose.dot(dtanh_h)
    dbias_h = dtanh_h.sum(0) if @bias
  end
  dx = dtanh_h.dot(@weight_h.transpose)
  dh += dtanh_h.dot(@weight2_h.transpose) * @reset

  dreset = @reset_sigmoid.backward(dtanh_h.dot(@weight2_h.transpose) * @h)
  dupdate = @update_sigmoid.backward(dh2 * @h - dh2 * @tanh_h)
  da = Xumo::SFloat.hstack([dupdate, dreset])
  if @trainable
    dweight_a = @x.transpose.dot(da)
    dweight2_a = @h.transpose.dot(da)
    dbias_a = da.sum(0) if @bias
  end
  dx += da.dot(@weight_a.transpose)
  dh += da.dot(@weight2_a.transpose)

  if @trainable
    @weight.grad += Xumo::SFloat.hstack([dweight_a, dweight_h])
    @recurrent_weight.grad += Xumo::SFloat.hstack([dweight2_a, dweight2_h])
    @bias.grad += Xumo::SFloat.hstack([dbias_a, dbias_h]) if @bias
  end
  [dx, dh]
end

#forward(x, h) ⇒ Object



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# File 'lib/dnn/core/rnn_layers.rb', line 376

def forward(x, h)
  @x = x
  @h = h
  num_nodes = h.shape[1]
  @weight_a = @weight.data[true, 0...(num_nodes * 2)]
  @weight2_a = @recurrent_weight.data[true, 0...(num_nodes * 2)]
  a = x.dot(@weight_a) + h.dot(@weight2_a)
  a += @bias.data[0...(num_nodes * 2)] if @bias
  @update = @update_sigmoid.forward(a[true, 0...num_nodes])
  @reset = @reset_sigmoid.forward(a[true, num_nodes..-1])

  @weight_h = @weight.data[true, (num_nodes * 2)..-1]
  @weight2_h = @recurrent_weight.data[true, (num_nodes * 2)..-1]
  @tanh_h = if @bias
    bias_h = @bias.data[(num_nodes * 2)..-1]
    @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h) + bias_h)
  else
    @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h))
  end
  h2 = (1 - @update) * @tanh_h + @update * h
  h2
end