Class: DNN::Layers::GRUDense
- Inherits:
-
Object
- Object
- DNN::Layers::GRUDense
- Defined in:
- lib/dnn/core/rnn_layers.rb
Instance Attribute Summary collapse
-
#trainable ⇒ Object
Returns the value of attribute trainable.
Instance Method Summary collapse
- #backward(dh2) ⇒ Object
- #forward(x, h) ⇒ Object
-
#initialize(weight, recurrent_weight, bias) ⇒ GRUDense
constructor
A new instance of GRUDense.
Constructor Details
#initialize(weight, recurrent_weight, bias) ⇒ GRUDense
Returns a new instance of GRUDense.
366 367 368 369 370 371 372 373 374 |
# File 'lib/dnn/core/rnn_layers.rb', line 366 def initialize(weight, recurrent_weight, bias) @weight = weight @recurrent_weight = recurrent_weight @bias = bias @update_sigmoid = Activations::Sigmoid.new @reset_sigmoid = Activations::Sigmoid.new @tanh = Activations::Tanh.new @trainable = true end |
Instance Attribute Details
#trainable ⇒ Object
Returns the value of attribute trainable.
364 365 366 |
# File 'lib/dnn/core/rnn_layers.rb', line 364 def trainable @trainable end |
Instance Method Details
#backward(dh2) ⇒ Object
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
# File 'lib/dnn/core/rnn_layers.rb', line 399 def backward(dh2) dtanh_h = @tanh.backward(dh2 * (1 - @update)) dh = dh2 * @update if @trainable dweight_h = @x.transpose.dot(dtanh_h) dweight2_h = (@h * @reset).transpose.dot(dtanh_h) dbias_h = dtanh_h.sum(0) if @bias end dx = dtanh_h.dot(@weight_h.transpose) dh += dtanh_h.dot(@weight2_h.transpose) * @reset dreset = @reset_sigmoid.backward(dtanh_h.dot(@weight2_h.transpose) * @h) dupdate = @update_sigmoid.backward(dh2 * @h - dh2 * @tanh_h) da = Xumo::SFloat.hstack([dupdate, dreset]) if @trainable dweight_a = @x.transpose.dot(da) dweight2_a = @h.transpose.dot(da) dbias_a = da.sum(0) if @bias end dx += da.dot(@weight_a.transpose) dh += da.dot(@weight2_a.transpose) if @trainable @weight.grad += Xumo::SFloat.hstack([dweight_a, dweight_h]) @recurrent_weight.grad += Xumo::SFloat.hstack([dweight2_a, dweight2_h]) @bias.grad += Xumo::SFloat.hstack([dbias_a, dbias_h]) if @bias end [dx, dh] end |
#forward(x, h) ⇒ Object
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
# File 'lib/dnn/core/rnn_layers.rb', line 376 def forward(x, h) @x = x @h = h num_nodes = h.shape[1] @weight_a = @weight.data[true, 0...(num_nodes * 2)] @weight2_a = @recurrent_weight.data[true, 0...(num_nodes * 2)] a = x.dot(@weight_a) + h.dot(@weight2_a) a += @bias.data[0...(num_nodes * 2)] if @bias @update = @update_sigmoid.forward(a[true, 0...num_nodes]) @reset = @reset_sigmoid.forward(a[true, num_nodes..-1]) @weight_h = @weight.data[true, (num_nodes * 2)..-1] @weight2_h = @recurrent_weight.data[true, (num_nodes * 2)..-1] @tanh_h = if @bias bias_h = @bias.data[(num_nodes * 2)..-1] @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h) + bias_h) else @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h)) end h2 = (1 - @update) * @tanh_h + @update * h h2 end |