Class: DNN::Optimizers::Adam
- Includes:
- Numo
- Defined in:
- lib/dnn/core/optimizers.rb
Instance Attribute Summary collapse
-
#beta1 ⇒ Object
Returns the value of attribute beta1.
-
#beta2 ⇒ Object
Returns the value of attribute beta2.
Attributes inherited from Optimizer
Instance Method Summary collapse
-
#initialize(learning_rate = 0.001, beta1 = 0.9, beta2 = 0.999) ⇒ Adam
constructor
A new instance of Adam.
- #update(layer) ⇒ Object
Constructor Details
#initialize(learning_rate = 0.001, beta1 = 0.9, beta2 = 0.999) ⇒ Adam
Returns a new instance of Adam.
88 89 90 91 92 93 94 95 |
# File 'lib/dnn/core/optimizers.rb', line 88 def initialize(learning_rate = 0.001, beta1 = 0.9, beta2 = 0.999) super(learning_rate) @beta1 = beta1 @beta2 = beta2 @iter = 0 @m = {} @v = {} end |
Instance Attribute Details
#beta1 ⇒ Object
Returns the value of attribute beta1.
85 86 87 |
# File 'lib/dnn/core/optimizers.rb', line 85 def beta1 @beta1 end |
#beta2 ⇒ Object
Returns the value of attribute beta2.
86 87 88 |
# File 'lib/dnn/core/optimizers.rb', line 86 def beta2 @beta2 end |
Instance Method Details
#update(layer) ⇒ Object
97 98 99 100 101 102 103 104 105 106 107 108 109 |
# File 'lib/dnn/core/optimizers.rb', line 97 def update(layer) @iter += 1 @m[layer] ||= {} @v[layer] ||= {} lr = @learning_rate * Math.sqrt(1 - @beta2**@iter) / (1 - @beta1**@iter) layer.params.each_key do |key| @m[layer][key] ||= 0 @v[layer][key] ||= 0 @m[layer][key] += (1 - @beta1) * (layer.grads[key] - @m[layer][key]) @v[layer][key] += (1 - @beta2) * (layer.grads[key]**2 - @v[layer][key]) layer.params[key] -= lr * @m[layer][key] / NMath.sqrt(@v[layer][key] + 1e-7) end end |