Class: OpenCV::CvRTrees

Inherits:
Object
  • Object
show all
Extended by:
FFI::DataConverter
Defined in:
lib/ropencv/ropencv_types.rb

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

.cast_from_cv_stat_model(ptr) ⇒ CvRTrees Also known as: castFromCvStatModel

Note:

wrapper for static method CvRTrees* CvRTrees::castFromCvStatModel(CvStatModel* ptr)

Parameters:

Returns:



43864
43865
43866
# File 'lib/ropencv/ropencv_types.rb', line 43864

def self.cast_from_cv_stat_model(ptr)
    Rbind::cvr_trees_cast_from_cv_stat_model(ptr)
end

.new(*args) ⇒ Object

Raises:

  • (ArgumentError)


43700
43701
43702
43703
43704
43705
43706
43707
43708
43709
43710
43711
43712
43713
43714
43715
43716
43717
43718
43719
43720
# File 'lib/ropencv/ropencv_types.rb', line 43700

def self.new(*args)
    if args.first.is_a?(FFI::Pointer) || args.first.is_a?(CvRTreesStruct)
        raise ArgumentError, "too many arguments for creating #{self.name} from Pointer" unless args.size == 1
        return super(args.first)
    end
    # overloaded method wrapper for CvRTrees::CvRTrees()
    @@cvr_trees_cvr_trees_defaults0 ||= []
    if(args.size >= 0 && args.size <= 0)
        targs = args.clone
        targs.size.upto(-1) do |i|
            targs[i] = @@cvr_trees_cvr_trees_defaults0[i]
        end
        begin
                return Rbind::cvr_trees_cvr_trees(*targs)
        rescue TypeError => e
            @error = e
        end
    end

    raise ArgumentError, "no constructor for #{self}(#{args.inspect})"
end

.nullObject

returns a null pointer to the object



43696
43697
43698
# File 'lib/ropencv/ropencv_types.rb', line 43696

def self.null
    new(CvRTreesStruct.new)
end

Instance Method Details

#cast_to_cv_stat_modelCvStatModel Also known as: castToCvStatModel

Note:

method wrapper for CvStatModel* CvRTrees::castToCvStatModel()

Returns:



43850
43851
43852
43853
43854
43855
43856
43857
43858
# File 'lib/ropencv/ropencv_types.rb', line 43850

def cast_to_cv_stat_model()
    __validate_pointer__
    result = Rbind::cvr_trees_cast_to_cv_stat_model( self)
    if result.respond_to?(:__owner__?) && !result.__owner__?
    # store owner insight the pointer to not get garbage collected
        result.instance_variable_get(:@__obj_ptr__).instance_variable_set(:@__owner__,self) 
    end
    result
end

#clearVoid

Note:

method wrapper for void CvRTrees::clear()

Returns:

  • (Void)


43843
43844
43845
43846
# File 'lib/ropencv/ropencv_types.rb', line 43843

def clear()
    __validate_pointer__
    Rbind::cvr_trees_clear( self)
end

#get_var_importanceCv::Mat Also known as: getVarImportance

Note:

method wrapper for cv::Mat CvRTrees::getVarImportance()

Returns:



43830
43831
43832
43833
43834
43835
43836
43837
43838
# File 'lib/ropencv/ropencv_types.rb', line 43830

def get_var_importance()
    __validate_pointer__
    result = Rbind::cvr_trees_get_var_importance( self)
    if result.respond_to?(:__owner__?) && !result.__owner__?
    # store owner insight the pointer to not get garbage collected
        result.instance_variable_get(:@__obj_ptr__).instance_variable_set(:@__owner__,self) 
    end
    result
end

#load(filename, name = 0) ⇒ Void

Note:

method wrapper for void CvRTrees::load(c_string filename, c_string name = 0)

Parameters:

  • filename (C_string)
  • name (C_string) (defaults to: 0)

Returns:

  • (Void)


43882
43883
43884
43885
# File 'lib/ropencv/ropencv_types.rb', line 43882

def load(filename, name = 0)
    __validate_pointer__
    Rbind::cvr_trees_load( self, filename, name)
end

#predict(sample, missing = Cv::Mat.new()) ⇒ Float

Note:

method wrapper for float CvRTrees::predict(const cv::Mat sample, const cv::Mat missing = cv::Mat())

Parameters:

Returns:

  • (Float)


43814
43815
43816
43817
# File 'lib/ropencv/ropencv_types.rb', line 43814

def predict(sample, missing = Cv::Mat.new())
    __validate_pointer__
    Rbind::cvr_trees_predict( self, sample, missing)
end

#predict_prob(sample, missing = Cv::Mat.new()) ⇒ Float

Note:

method wrapper for float CvRTrees::predict_prob(const cv::Mat sample, const cv::Mat missing = cv::Mat())

Parameters:

Returns:

  • (Float)


43823
43824
43825
43826
# File 'lib/ropencv/ropencv_types.rb', line 43823

def predict_prob(sample, missing = Cv::Mat.new())
    __validate_pointer__
    Rbind::cvr_trees_predict_prob( self, sample, missing)
end

#save(filename, name = 0) ⇒ Void

Note:

method wrapper for void CvRTrees::save(c_string filename, c_string name = 0)

Parameters:

  • filename (C_string)
  • name (C_string) (defaults to: 0)

Returns:

  • (Void)


43873
43874
43875
43876
# File 'lib/ropencv/ropencv_types.rb', line 43873

def save(filename, name = 0)
    __validate_pointer__
    Rbind::cvr_trees_save( self, filename, name)
end

#to_sObject

converts CvRTrees into a string by crawling through all its attributes



43786
43787
43788
# File 'lib/ropencv/ropencv_types.rb', line 43786

def to_s
    "#<CvRTrees >"
end

#train(train_data, tflag, responses, var_idx = Cv::Mat.new(), sample_idx = Cv::Mat.new(), var_type = Cv::Mat.new(), missing_data_mask = Cv::Mat.new(), params = CvRTParams.new()) ⇒ Bool

Note:

method wrapper for bool CvRTrees::train(const cv::Mat trainData, int tflag, const cv::Mat responses, const cv::Mat varIdx = cv::Mat(), const cv::Mat sampleIdx = cv::Mat(), const cv::Mat varType = cv::Mat(), const cv::Mat missingDataMask = cv::Mat(), const CvRTParams params = CvRTParams())

methods

Parameters:

  • train_data (Cv::Mat)
  • tflag (Fixnum)
  • responses (Cv::Mat)
  • var_idx (Cv::Mat) (defaults to: Cv::Mat.new())
  • sample_idx (Cv::Mat) (defaults to: Cv::Mat.new())
  • var_type (Cv::Mat) (defaults to: Cv::Mat.new())
  • missing_data_mask (Cv::Mat) (defaults to: Cv::Mat.new())
  • params (CvRTParams) (defaults to: CvRTParams.new())

Returns:

  • (Bool)


43805
43806
43807
43808
# File 'lib/ropencv/ropencv_types.rb', line 43805

def train(train_data, tflag, responses, var_idx = Cv::Mat.new(), sample_idx = Cv::Mat.new(), var_type = Cv::Mat.new(), missing_data_mask = Cv::Mat.new(), params = CvRTParams.new())
    __validate_pointer__
    Rbind::cvr_trees_train( self, train_data, tflag, responses, var_idx, sample_idx, var_type, missing_data_mask, params)
end