Class: OpenCV::CvNormalBayesClassifier

Inherits:
Object
  • Object
show all
Extended by:
FFI::DataConverter
Defined in:
lib/ropencv/ropencv_types.rb

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

.cast_from_cv_stat_model(ptr) ⇒ CvNormalBayesClassifier Also known as: castFromCvStatModel

Note:

wrapper for static method CvNormalBayesClassifier* CvNormalBayesClassifier::castFromCvStatModel(CvStatModel* ptr)

Parameters:

Returns:



42152
42153
42154
# File 'lib/ropencv/ropencv_types.rb', line 42152

def self.cast_from_cv_stat_model(ptr)
    Rbind::cv_normal_bayes_classifier_cast_from_cv_stat_model(ptr)
end

.cv_normal_bayes_classifierObject .cv_normal_bayes_classifier(train_data, responses, var_idx = Cv::Mat.new(), sample_idx = Cv::Mat.new()) ⇒ Object

Overloads:

  • .cv_normal_bayes_classifier(train_data, responses, var_idx = Cv::Mat.new(), sample_idx = Cv::Mat.new()) ⇒ Object

    Parameters:

Raises:

  • (ArgumentError)


41999
42000
42001
42002
42003
42004
42005
42006
42007
42008
42009
42010
42011
42012
42013
42014
42015
42016
42017
42018
42019
42020
42021
42022
42023
42024
42025
42026
42027
42028
42029
42030
42031
42032
42033
# File 'lib/ropencv/ropencv_types.rb', line 41999

def self.new(*args)
    if args.first.is_a?(FFI::Pointer) || args.first.is_a?(CvNormalBayesClassifierStruct)
        raise ArgumentError, "too many arguments for creating #{self.name} from Pointer" unless args.size == 1
        return super(args.first)
    end
    # overloaded method wrapper for CvNormalBayesClassifier::CvNormalBayesClassifier()
    @@cv_normal_bayes_classifier_cv_normal_bayes_classifier_defaults0 ||= []
    if(args.size >= 0 && args.size <= 0)
        targs = args.clone
        targs.size.upto(-1) do |i|
            targs[i] = @@cv_normal_bayes_classifier_cv_normal_bayes_classifier_defaults0[i]
        end
        begin
                return Rbind::cv_normal_bayes_classifier_cv_normal_bayes_classifier(*targs)
        rescue TypeError => e
            @error = e
        end
    end

    # overloaded method wrapper for CvNormalBayesClassifier::CvNormalBayesClassifier(const cv::Mat trainData, const cv::Mat responses, const cv::Mat varIdx = cv::Mat(), const cv::Mat sampleIdx = cv::Mat())
    @@cv_normal_bayes_classifier_cv_normal_bayes_classifier2_defaults1 ||= [nil, nil, Cv::Mat.new(), Cv::Mat.new()]
    if(args.size >= 2 && args.size <= 4)
        targs = args.clone
        targs.size.upto(3) do |i|
            targs[i] = @@cv_normal_bayes_classifier_cv_normal_bayes_classifier2_defaults1[i]
        end
        begin
                return Rbind::cv_normal_bayes_classifier_cv_normal_bayes_classifier2(*targs)
        rescue TypeError => e
            @error = e
        end
    end

    raise ArgumentError, "no constructor for #{self}(#{args.inspect})"
end

.nullObject

returns a null pointer to the object



41988
41989
41990
# File 'lib/ropencv/ropencv_types.rb', line 41988

def self.null
    new(CvNormalBayesClassifierStruct.new)
end

Instance Method Details

#cast_to_cv_stat_modelCvStatModel Also known as: castToCvStatModel

Note:

method wrapper for CvStatModel* CvNormalBayesClassifier::castToCvStatModel()

Returns:



42138
42139
42140
42141
42142
42143
42144
42145
42146
# File 'lib/ropencv/ropencv_types.rb', line 42138

def cast_to_cv_stat_model()
    __validate_pointer__
    result = Rbind::cv_normal_bayes_classifier_cast_to_cv_stat_model( self)
    if result.respond_to?(:__owner__?) && !result.__owner__?
    # store owner insight the pointer to not get garbage collected
        result.instance_variable_get(:@__obj_ptr__).instance_variable_set(:@__owner__,self) 
    end
    result
end

#clearVoid

Note:

method wrapper for void CvNormalBayesClassifier::clear()

methods

Returns:

  • (Void)


42110
42111
42112
42113
# File 'lib/ropencv/ropencv_types.rb', line 42110

def clear()
    __validate_pointer__
    Rbind::cv_normal_bayes_classifier_clear( self)
end

#load(filename, name = 0) ⇒ Void

Note:

method wrapper for void CvNormalBayesClassifier::load(c_string filename, c_string name = 0)

Parameters:

  • filename (C_string)
  • name (C_string) (defaults to: 0)

Returns:

  • (Void)


42170
42171
42172
42173
# File 'lib/ropencv/ropencv_types.rb', line 42170

def load(filename, name = 0)
    __validate_pointer__
    Rbind::cv_normal_bayes_classifier_load( self, filename, name)
end

#predict(samples, results = Cv::Mat::null) ⇒ Float

Note:

method wrapper for float CvNormalBayesClassifier::predict(const cv::Mat samples, const cv::Mat* results = 0/O)

Parameters:

Returns:

  • (Float)


42131
42132
42133
42134
# File 'lib/ropencv/ropencv_types.rb', line 42131

def predict(samples, results = Cv::Mat::null)
    __validate_pointer__
    Rbind::cv_normal_bayes_classifier_predict( self, samples, results)
end

#save(filename, name = 0) ⇒ Void

Note:

method wrapper for void CvNormalBayesClassifier::save(c_string filename, c_string name = 0)

Parameters:

  • filename (C_string)
  • name (C_string) (defaults to: 0)

Returns:

  • (Void)


42161
42162
42163
42164
# File 'lib/ropencv/ropencv_types.rb', line 42161

def save(filename, name = 0)
    __validate_pointer__
    Rbind::cv_normal_bayes_classifier_save( self, filename, name)
end

#to_sObject

converts CvNormalBayesClassifier into a string by crawling through all its attributes



42099
42100
42101
# File 'lib/ropencv/ropencv_types.rb', line 42099

def to_s
    "#<CvNormalBayesClassifier >"
end

#train(train_data, responses, var_idx = Cv::Mat.new(), sample_idx = Cv::Mat.new(), update = false) ⇒ Bool

Note:

method wrapper for bool CvNormalBayesClassifier::train(const cv::Mat trainData, const cv::Mat responses, const cv::Mat varIdx = cv::Mat(), const cv::Mat sampleIdx = cv::Mat(), bool update = false)

Parameters:

  • train_data (Cv::Mat)
  • responses (Cv::Mat)
  • var_idx (Cv::Mat) (defaults to: Cv::Mat.new())
  • sample_idx (Cv::Mat) (defaults to: Cv::Mat.new())
  • update (Bool) (defaults to: false)

Returns:

  • (Bool)


42122
42123
42124
42125
# File 'lib/ropencv/ropencv_types.rb', line 42122

def train(train_data, responses, var_idx = Cv::Mat.new(), sample_idx = Cv::Mat.new(), update = false)
    __validate_pointer__
    Rbind::cv_normal_bayes_classifier_train( self, train_data, responses, var_idx, sample_idx, update)
end