Class: OpenCV::CvNormalBayesClassifier
- Inherits:
-
Object
- Object
- OpenCV::CvNormalBayesClassifier
- Extended by:
- FFI::DataConverter
- Defined in:
- lib/ropencv/ropencv_types.rb
Class Method Summary collapse
- .cast_from_cv_stat_model(ptr) ⇒ CvNormalBayesClassifier (also: castFromCvStatModel)
- .new(*args) ⇒ Object
-
.null ⇒ Object
returns a null pointer to the object.
Instance Method Summary collapse
- #cast_to_cv_stat_model ⇒ CvStatModel (also: #castToCvStatModel)
-
#clear ⇒ Void
methods.
- #load(filename, name = 0) ⇒ Void
- #predict(samples, results = Cv::Mat::null) ⇒ Float
- #save(filename, name = 0) ⇒ Void
-
#to_s ⇒ Object
converts CvNormalBayesClassifier into a string by crawling through all its attributes.
- #train(train_data, responses, var_idx = Cv::Mat.new(), sample_idx = Cv::Mat.new(), update = false) ⇒ Bool
Class Method Details
.cast_from_cv_stat_model(ptr) ⇒ CvNormalBayesClassifier Also known as: castFromCvStatModel
wrapper for static method CvNormalBayesClassifier* CvNormalBayesClassifier::castFromCvStatModel(CvStatModel* ptr)
42152 42153 42154 |
# File 'lib/ropencv/ropencv_types.rb', line 42152 def self.cast_from_cv_stat_model(ptr) Rbind::cv_normal_bayes_classifier_cast_from_cv_stat_model(ptr) end |
.cv_normal_bayes_classifier ⇒ Object .cv_normal_bayes_classifier(train_data, responses, var_idx = Cv::Mat.new(), sample_idx = Cv::Mat.new()) ⇒ Object
41999 42000 42001 42002 42003 42004 42005 42006 42007 42008 42009 42010 42011 42012 42013 42014 42015 42016 42017 42018 42019 42020 42021 42022 42023 42024 42025 42026 42027 42028 42029 42030 42031 42032 42033 |
# File 'lib/ropencv/ropencv_types.rb', line 41999 def self.new(*args) if args.first.is_a?(FFI::Pointer) || args.first.is_a?(CvNormalBayesClassifierStruct) raise ArgumentError, "too many arguments for creating #{self.name} from Pointer" unless args.size == 1 return super(args.first) end # overloaded method wrapper for CvNormalBayesClassifier::CvNormalBayesClassifier() @@cv_normal_bayes_classifier_cv_normal_bayes_classifier_defaults0 ||= [] if(args.size >= 0 && args.size <= 0) targs = args.clone targs.size.upto(-1) do |i| targs[i] = @@cv_normal_bayes_classifier_cv_normal_bayes_classifier_defaults0[i] end begin return Rbind::cv_normal_bayes_classifier_cv_normal_bayes_classifier(*targs) rescue TypeError => e @error = e end end # overloaded method wrapper for CvNormalBayesClassifier::CvNormalBayesClassifier(const cv::Mat trainData, const cv::Mat responses, const cv::Mat varIdx = cv::Mat(), const cv::Mat sampleIdx = cv::Mat()) @@cv_normal_bayes_classifier_cv_normal_bayes_classifier2_defaults1 ||= [nil, nil, Cv::Mat.new(), Cv::Mat.new()] if(args.size >= 2 && args.size <= 4) targs = args.clone targs.size.upto(3) do |i| targs[i] = @@cv_normal_bayes_classifier_cv_normal_bayes_classifier2_defaults1[i] end begin return Rbind::cv_normal_bayes_classifier_cv_normal_bayes_classifier2(*targs) rescue TypeError => e @error = e end end raise ArgumentError, "no constructor for #{self}(#{args.inspect})" end |
.null ⇒ Object
returns a null pointer to the object
41988 41989 41990 |
# File 'lib/ropencv/ropencv_types.rb', line 41988 def self.null new(CvNormalBayesClassifierStruct.new) end |
Instance Method Details
#cast_to_cv_stat_model ⇒ CvStatModel Also known as: castToCvStatModel
method wrapper for CvStatModel* CvNormalBayesClassifier::castToCvStatModel()
42138 42139 42140 42141 42142 42143 42144 42145 42146 |
# File 'lib/ropencv/ropencv_types.rb', line 42138 def cast_to_cv_stat_model() __validate_pointer__ result = Rbind::cv_normal_bayes_classifier_cast_to_cv_stat_model( self) if result.respond_to?(:__owner__?) && !result.__owner__? # store owner insight the pointer to not get garbage collected result.instance_variable_get(:@__obj_ptr__).instance_variable_set(:@__owner__,self) end result end |
#clear ⇒ Void
method wrapper for void CvNormalBayesClassifier::clear()
methods
42110 42111 42112 42113 |
# File 'lib/ropencv/ropencv_types.rb', line 42110 def clear() __validate_pointer__ Rbind::cv_normal_bayes_classifier_clear( self) end |
#load(filename, name = 0) ⇒ Void
method wrapper for void CvNormalBayesClassifier::load(c_string filename, c_string name = 0)
42170 42171 42172 42173 |
# File 'lib/ropencv/ropencv_types.rb', line 42170 def load(filename, name = 0) __validate_pointer__ Rbind::cv_normal_bayes_classifier_load( self, filename, name) end |
#predict(samples, results = Cv::Mat::null) ⇒ Float
method wrapper for float CvNormalBayesClassifier::predict(const cv::Mat samples, const cv::Mat* results = 0/O)
42131 42132 42133 42134 |
# File 'lib/ropencv/ropencv_types.rb', line 42131 def predict(samples, results = Cv::Mat::null) __validate_pointer__ Rbind::cv_normal_bayes_classifier_predict( self, samples, results) end |
#save(filename, name = 0) ⇒ Void
method wrapper for void CvNormalBayesClassifier::save(c_string filename, c_string name = 0)
42161 42162 42163 42164 |
# File 'lib/ropencv/ropencv_types.rb', line 42161 def save(filename, name = 0) __validate_pointer__ Rbind::cv_normal_bayes_classifier_save( self, filename, name) end |
#to_s ⇒ Object
converts CvNormalBayesClassifier into a string by crawling through all its attributes
42099 42100 42101 |
# File 'lib/ropencv/ropencv_types.rb', line 42099 def to_s "#<CvNormalBayesClassifier >" end |
#train(train_data, responses, var_idx = Cv::Mat.new(), sample_idx = Cv::Mat.new(), update = false) ⇒ Bool
method wrapper for bool CvNormalBayesClassifier::train(const cv::Mat trainData, const cv::Mat responses, const cv::Mat varIdx = cv::Mat(), const cv::Mat sampleIdx = cv::Mat(), bool update = false)
42122 42123 42124 42125 |
# File 'lib/ropencv/ropencv_types.rb', line 42122 def train(train_data, responses, var_idx = Cv::Mat.new(), sample_idx = Cv::Mat.new(), update = false) __validate_pointer__ Rbind::cv_normal_bayes_classifier_train( self, train_data, responses, var_idx, sample_idx, update) end |