Class: VectorModel
- Inherits:
-
Object
- Object
- VectorModel
- Defined in:
- lib/rbbt/vector/model.rb
Direct Known Subclasses
Instance Attribute Summary collapse
-
#directory ⇒ Object
Returns the value of attribute directory.
-
#eval_model ⇒ Object
Returns the value of attribute eval_model.
-
#extract_features ⇒ Object
Returns the value of attribute extract_features.
-
#features ⇒ Object
Returns the value of attribute features.
-
#labels ⇒ Object
Returns the value of attribute labels.
-
#model_file ⇒ Object
Returns the value of attribute model_file.
-
#train_model ⇒ Object
Returns the value of attribute train_model.
Class Method Summary collapse
- .R_eval(model_file, features, list, code) ⇒ Object
- .R_run(model_file, features, labels, code) ⇒ Object
- .R_train(model_file, features, labels, code) ⇒ Object
Instance Method Summary collapse
- #add(element, label = nil) ⇒ Object
- #clear ⇒ Object
- #cross_validation(folds = 10) ⇒ Object
- #eval(element) ⇒ Object
- #eval_list(elements, extract = true) ⇒ Object
-
#initialize(directory, extract_features = nil, train_model = nil, eval_model = nil) ⇒ VectorModel
constructor
A new instance of VectorModel.
- #run(code) ⇒ Object
- #train ⇒ Object
Constructor Details
#initialize(directory, extract_features = nil, train_model = nil, eval_model = nil) ⇒ VectorModel
63 64 65 66 67 68 69 70 71 72 |
# File 'lib/rbbt/vector/model.rb', line 63 def initialize(directory, extract_features = nil, train_model = nil, eval_model = nil) @directory = directory FileUtils.mkdir_p @directory unless File.exists? @directory @model_file = File.join(@directory, "model") extract_features = @extract_features train_model = @train_model eval_model = @eval_model @features = [] @labels = [] end |
Instance Attribute Details
#directory ⇒ Object
Returns the value of attribute directory.
4 5 6 |
# File 'lib/rbbt/vector/model.rb', line 4 def directory @directory end |
#eval_model ⇒ Object
Returns the value of attribute eval_model.
4 5 6 |
# File 'lib/rbbt/vector/model.rb', line 4 def eval_model @eval_model end |
#extract_features ⇒ Object
Returns the value of attribute extract_features.
4 5 6 |
# File 'lib/rbbt/vector/model.rb', line 4 def extract_features @extract_features end |
#features ⇒ Object
Returns the value of attribute features.
5 6 7 |
# File 'lib/rbbt/vector/model.rb', line 5 def features @features end |
#labels ⇒ Object
Returns the value of attribute labels.
5 6 7 |
# File 'lib/rbbt/vector/model.rb', line 5 def labels @labels end |
#model_file ⇒ Object
Returns the value of attribute model_file.
4 5 6 |
# File 'lib/rbbt/vector/model.rb', line 4 def model_file @model_file end |
#train_model ⇒ Object
Returns the value of attribute train_model.
4 5 6 |
# File 'lib/rbbt/vector/model.rb', line 4 def train_model @train_model end |
Class Method Details
.R_eval(model_file, features, list, code) ⇒ Object
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/rbbt/vector/model.rb', line 36 def self.R_eval(model_file, features, list, code) TmpFile.with_file do |feature_file| TmpFile.with_file do |results| if list Open.write(feature_file, features.collect{|feat| feat * "\t"} * "\n" + "\n") else Open.write(feature_file, features * "\t" + "\n") end io = R.run <<-EOF features = read.table("#{ feature_file }", sep ="\\t", stringsAsFactors=FALSE); load(file="#{model_file}"); #{code} cat(paste(label, sep="\\n")); EOF res = io.read.sub(/WARNING: .*?\n/s,'').split(/\s+/).collect{|l| l.to_f} if list res else res.first end end end end |
.R_run(model_file, features, labels, code) ⇒ Object
7 8 9 10 11 12 13 14 15 16 17 18 19 |
# File 'lib/rbbt/vector/model.rb', line 7 def self.R_run(model_file, features, labels, code) TmpFile.with_file do |feature_file| Open.write(feature_file, features.collect{|feats| feats * "\t"} * "\n") Open.write(feature_file + '.class', labels * "\n") R.run <<-EOF features = read.table("#{ feature_file }", sep ="\\t", stringsAsFactors=FALSE); labels = scan("#{ feature_file }.class"); features = cbind(features, class = labels); #{code} EOF end end |
.R_train(model_file, features, labels, code) ⇒ Object
21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
# File 'lib/rbbt/vector/model.rb', line 21 def self.R_train(model_file, features, labels, code) TmpFile.with_file do |feature_file| Open.write(feature_file, features.collect{|feats| feats * "\t"} * "\n") Open.write(feature_file + '.class', labels * "\n") R.run <<-EOF features = read.table("#{ feature_file }", sep ="\\t", stringsAsFactors=FALSE); labels = scan("#{ feature_file }.class"); features = cbind(features, class = labels); #{code} save(model, file='#{model_file}') EOF end end |
Instance Method Details
#add(element, label = nil) ⇒ Object
79 80 81 82 |
# File 'lib/rbbt/vector/model.rb', line 79 def add(element, label = nil) @features << extract_features.call(element) @labels << label unless label.nil? end |
#clear ⇒ Object
74 75 76 77 |
# File 'lib/rbbt/vector/model.rb', line 74 def clear @features = [] @labels = [] end |
#cross_validation(folds = 10) ⇒ Object
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# File 'lib/rbbt/vector/model.rb', line 115 def cross_validation(folds = 10) saved_features = @features saved_labels = @labels seq = (0..features.length - 1).to_a chunk_size = features.length / folds acc = [] folds.times do seq = seq.shuffle eval_chunk = seq[0..chunk_size] train_chunk = seq[chunk_size.. -1] eval_features = @features.values_at *eval_chunk eval_labels = @labels.values_at *eval_chunk @features = @features.values_at *train_chunk @labels = @labels.values_at *train_chunk train predictions = eval_list eval_features, false acc << predictions.zip(eval_labels).collect{|pred,lab| pred - lab < 0.5 ? 1 : 0}.inject(0){|acc,e| acc +=e} / chunk_size @features = saved_features @labels = saved_labels end acc end |
#eval(element) ⇒ Object
97 98 99 100 101 102 103 104 |
# File 'lib/rbbt/vector/model.rb', line 97 def eval(element) case when Proc === eval_model eval_model.call(@model_file, extract_features.call(element), false) when String === eval_model VectorModel.R_eval(@model_file, extract_features.call(element), false, eval_model) end end |
#eval_list(elements, extract = true) ⇒ Object
106 107 108 109 110 111 112 113 |
# File 'lib/rbbt/vector/model.rb', line 106 def eval_list(elements, extract = true) case when Proc === eval_model eval_model.call(@model_file, extract ? elements.collect{|element| extract_features.call(element)} : elements, true) when String === eval_model SVMModel.R_eval(@model_file, extract ? elements.collect{|element| extract_features.call(element)} : elements, true, eval_model) end end |
#run(code) ⇒ Object
93 94 95 |
# File 'lib/rbbt/vector/model.rb', line 93 def run(code) VectorModel.R_run(@model_file, @features, @labels, code) end |
#train ⇒ Object
84 85 86 87 88 89 90 91 |
# File 'lib/rbbt/vector/model.rb', line 84 def train case when Proc === train_model train_model.call(@model_file, @features, @labels) when String === train_model VectorModel.R_train(@model_file, @features, @labels, train_model) end end |