Class: Brain::NeuralNetwork

Inherits:
Object
  • Object
show all
Defined in:
lib/brain/neuralnetwork.rb

Instance Method Summary collapse

Constructor Details

#initialize(options = {}) ⇒ NeuralNetwork



5
6
7
8
9
10
# File 'lib/brain/neuralnetwork.rb', line 5

def initialize(options = {})
  @learning_rate = options[:learning_rate] || 0.3
  @momentum = options[:momentum] || 0.1
  @hidden_sizes = options[:hidden_layers]
  @binary_thresh = options[:binary_thresh] || 0.5
end

Instance Method Details

#adjust_weights(learning_rate) ⇒ Object



145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# File 'lib/brain/neuralnetwork.rb', line 145

def adjust_weights(learning_rate)
  (1..@output_layer).each do |layer|
    incoming = @outputs[layer - 1]

    (0...@sizes[layer]).each do |node|
      delta = @deltas[layer][node]

      (0...incoming.length).each do |k|
        change = @changes[layer][node][k]

        change = (learning_rate * delta * incoming[k]) + (@momentum * change)

        @changes[layer][node][k] = change
        @weights[layer][node][k] += change
      end
      @biases[layer][node] += learning_rate * delta
    end
  end
end

#calculate_deltas(target) ⇒ Object



125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# File 'lib/brain/neuralnetwork.rb', line 125

def calculate_deltas(target)
  (0..@output_layer).to_a.reverse.each do |layer|
    (0...@sizes[layer]).each do |node|
      output = @outputs[layer][node]

      error = 0
      if layer == @output_layer
        error = target[node] - output
      else
        deltas = @deltas[layer + 1]
        (0...deltas.length).each do |k|
          error += deltas[k] * @weights[layer + 1][k][node]
        end
      end
      @errors[layer][node] = error
      @deltas[layer][node] = error * output * (1 - output)
    end
  end
end

#format_data(data) ⇒ Object



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# File 'lib/brain/neuralnetwork.rb', line 165

def format_data(data)
  unless data.is_a? Array
    data = [data]
  end

  #turn sparse hash input into arrays with 0s as filler
  unless data[0][:input].is_a? Array
    @input_lookup = Lookup.build_lookup data.map {|d| d[:input]} unless @input_lookup
    data.map! do |datum|
      array = Lookup.to_array @input_lookup, datum[:input]
      datum.merge({ input: array })
    end
  end

  unless data[0][:output].is_a? Array
    @output_lookup = Lookup.build_lookup data.map {|d| d[:output]} unless @output_lookup
    data.map! do |datum|
      array = Lookup.to_array @output_lookup, datum[:output]
      datum.merge({ output: array })
    end
  end

  data
end

#init(sizes) ⇒ Object



12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# File 'lib/brain/neuralnetwork.rb', line 12

def init(sizes)
  @sizes = sizes
  @output_layer = @sizes.length - 1

  @biases = [] # weights for bias nodes
  @weights = []
  @outputs = []

  # state for training
  @deltas = []
  @changes = [] # for momentum
  @errors = []

  (0..@output_layer).each do |layer|
    size = @sizes[layer]
    @deltas[layer] = Array.new size, 0
    @errors[layer] = Array.new size, 0
    @outputs[layer] = Array.new size, 0

    if layer > 0
      @biases[layer] = randos size
      @weights[layer] = Array.new size
      @changes[layer] = Array.new size

      (0...size).each do |node|
        prev_size = @sizes[layer - 1]
        @weights[layer][node] = randos prev_size
        @changes[layer][node] = Array.new prev_size, 0
      end
    end
  end
end

#run(input) ⇒ Object



45
46
47
48
49
50
51
52
# File 'lib/brain/neuralnetwork.rb', line 45

def run(input)
  input = Lookup.to_array(@input_lookup, input) if @input_lookup

  output = run_input input
  output = Lookup.to_hash(@output_lookup, output) if @output_lookup

  output
end

#run_input(input) ⇒ Object



54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# File 'lib/brain/neuralnetwork.rb', line 54

def run_input(input)
  @outputs[0] = input
  output = 0

  (1..@output_layer).each do |layer|
    (0...@sizes[layer]).each do |node|
      weights = @weights[layer][node]

      sum = @biases[layer][node]
      (0...weights.length).each do |k|
        sum += weights[k] * input[k]
      end
      @outputs[layer][node] = 1 / (1 + Math.exp(-sum))
    end
    output = input = @outputs[layer]
  end

  output
end

#train(data, options = {}) ⇒ Object



74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# File 'lib/brain/neuralnetwork.rb', line 74

def train(data, options = {})
  data = format_data data

  iterations = options[:iterations] || 20000
  error_thresh = options[:error_thresh] || 0.003
  log = options[:log] || false
  log_period = options[:log_period] || 10
  learning_rate = options[:learning_rate] || @learning_rate || 0.3

  input_size = data[0][:input].length
  output_size = data[0][:output].length

  hidden_sizes = @hidden_sizes
  hidden_sizes = [[3, (input_size / 2.0).floor].max] unless hidden_sizes
  sizes = [input_size, hidden_sizes, output_size].flatten
  init sizes

  error = 1
  done_iterations = iterations
  (0...iterations).each do |i|
    unless error > error_thresh
      done_iterations = i
      break
    end
    sum = 0
    data.each do |d|
      err = train_pattern d[:input], d[:output], learning_rate
      sum += err
    end
    error = sum / data.length

    puts "iterations: #{i}, training error: #{error}" if log and (i % log_period == 0)
  end

  {
    error: error,
    iterations: done_iterations
  }
end

#train_pattern(input, target, learning_rate) ⇒ Object



114
115
116
117
118
119
120
121
122
123
# File 'lib/brain/neuralnetwork.rb', line 114

def train_pattern(input, target, learning_rate)
  learning_rate ||= @learning_rate

  # forward propogate
  run_input input
  calculate_deltas target
  adjust_weights learning_rate

  mse @errors[@output_layer]
end