Class: Brain::NeuralNetwork
- Inherits:
-
Object
- Object
- Brain::NeuralNetwork
- Defined in:
- lib/brain/neuralnetwork.rb
Instance Method Summary collapse
- #adjust_weights(learning_rate) ⇒ Object
- #calculate_deltas(target) ⇒ Object
- #format_data(data) ⇒ Object
- #init(sizes) ⇒ Object
-
#initialize(options = {}) ⇒ NeuralNetwork
constructor
A new instance of NeuralNetwork.
- #run(input) ⇒ Object
- #run_input(input) ⇒ Object
- #train(data, options = {}) ⇒ Object
- #train_pattern(input, target, learning_rate) ⇒ Object
Constructor Details
#initialize(options = {}) ⇒ NeuralNetwork
5 6 7 8 9 10 |
# File 'lib/brain/neuralnetwork.rb', line 5 def initialize( = {}) @learning_rate = [:learning_rate] || 0.3 @momentum = [:momentum] || 0.1 @hidden_sizes = [:hidden_layers] @binary_thresh = [:binary_thresh] || 0.5 end |
Instance Method Details
#adjust_weights(learning_rate) ⇒ Object
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# File 'lib/brain/neuralnetwork.rb', line 145 def adjust_weights(learning_rate) (1..@output_layer).each do |layer| incoming = @outputs[layer - 1] (0...@sizes[layer]).each do |node| delta = @deltas[layer][node] (0...incoming.length).each do |k| change = @changes[layer][node][k] change = (learning_rate * delta * incoming[k]) + (@momentum * change) @changes[layer][node][k] = change @weights[layer][node][k] += change end @biases[layer][node] += learning_rate * delta end end end |
#calculate_deltas(target) ⇒ Object
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# File 'lib/brain/neuralnetwork.rb', line 125 def calculate_deltas(target) (0..@output_layer).to_a.reverse.each do |layer| (0...@sizes[layer]).each do |node| output = @outputs[layer][node] error = 0 if layer == @output_layer error = target[node] - output else deltas = @deltas[layer + 1] (0...deltas.length).each do |k| error += deltas[k] * @weights[layer + 1][k][node] end end @errors[layer][node] = error @deltas[layer][node] = error * output * (1 - output) end end end |
#format_data(data) ⇒ Object
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# File 'lib/brain/neuralnetwork.rb', line 165 def format_data(data) unless data.is_a? Array data = [data] end #turn sparse hash input into arrays with 0s as filler unless data[0][:input].is_a? Array @input_lookup = Lookup.build_lookup data.map {|d| d[:input]} unless @input_lookup data.map! do |datum| array = Lookup.to_array @input_lookup, datum[:input] datum.merge({ input: array }) end end unless data[0][:output].is_a? Array @output_lookup = Lookup.build_lookup data.map {|d| d[:output]} unless @output_lookup data.map! do |datum| array = Lookup.to_array @output_lookup, datum[:output] datum.merge({ output: array }) end end data end |
#init(sizes) ⇒ Object
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# File 'lib/brain/neuralnetwork.rb', line 12 def init(sizes) @sizes = sizes @output_layer = @sizes.length - 1 @biases = [] # weights for bias nodes @weights = [] @outputs = [] # state for training @deltas = [] @changes = [] # for momentum @errors = [] (0..@output_layer).each do |layer| size = @sizes[layer] @deltas[layer] = Array.new size, 0 @errors[layer] = Array.new size, 0 @outputs[layer] = Array.new size, 0 if layer > 0 @biases[layer] = randos size @weights[layer] = Array.new size @changes[layer] = Array.new size (0...size).each do |node| prev_size = @sizes[layer - 1] @weights[layer][node] = randos prev_size @changes[layer][node] = Array.new prev_size, 0 end end end end |
#run(input) ⇒ Object
45 46 47 48 49 50 51 52 |
# File 'lib/brain/neuralnetwork.rb', line 45 def run(input) input = Lookup.to_array(@input_lookup, input) if @input_lookup output = run_input input output = Lookup.to_hash(@output_lookup, output) if @output_lookup output end |
#run_input(input) ⇒ Object
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# File 'lib/brain/neuralnetwork.rb', line 54 def run_input(input) @outputs[0] = input output = 0 (1..@output_layer).each do |layer| (0...@sizes[layer]).each do |node| weights = @weights[layer][node] sum = @biases[layer][node] (0...weights.length).each do |k| sum += weights[k] * input[k] end @outputs[layer][node] = 1 / (1 + Math.exp(-sum)) end output = input = @outputs[layer] end output end |
#train(data, options = {}) ⇒ Object
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
# File 'lib/brain/neuralnetwork.rb', line 74 def train(data, = {}) data = format_data data iterations = [:iterations] || 20000 error_thresh = [:error_thresh] || 0.003 log = [:log] || false log_period = [:log_period] || 10 learning_rate = [:learning_rate] || @learning_rate || 0.3 input_size = data[0][:input].length output_size = data[0][:output].length hidden_sizes = @hidden_sizes hidden_sizes = [[3, (input_size / 2.0).floor].max] unless hidden_sizes sizes = [input_size, hidden_sizes, output_size].flatten init sizes error = 1 done_iterations = iterations (0...iterations).each do |i| unless error > error_thresh done_iterations = i break end sum = 0 data.each do |d| err = train_pattern d[:input], d[:output], learning_rate sum += err end error = sum / data.length puts "iterations: #{i}, training error: #{error}" if log and (i % log_period == 0) end { error: error, iterations: done_iterations } end |
#train_pattern(input, target, learning_rate) ⇒ Object
114 115 116 117 118 119 120 121 122 123 |
# File 'lib/brain/neuralnetwork.rb', line 114 def train_pattern(input, target, learning_rate) learning_rate ||= @learning_rate # forward propogate run_input input calculate_deltas target adjust_weights learning_rate mse @errors[@output_layer] end |